Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

NT 510-part B Operations Management Mid-term Spring 201 2) Use exponential smoot

ID: 348398 • Letter: N

Question

NT 510-part B Operations Management Mid-term Spring 201 2) Use exponential smoothing with trend adjustment to forecast deliveries for period. Let alpha = 0.4, beta = 0.2, and let the initial trend value be 4 and the initial forecast be 200, (10 points) Actual 200 212 214 236 221 240 244 250 7 1266 Calculate and Fill-in: 1.MAD (Mean Absolute Deviation)- Average: 2.MSE (Mean Squared Exror) - Average: 3. Standard Error- Average: 4.MAPE (Mean Absolute Percent Error) 5. Forecast next period 6. Provide track signals for past 9 periods (2-10)

Explanation / Answer

Actual Demand (A)

Forecast (F)

Trend
(T)

Adjusted Forecast
F1= (F+T)

Absoulute Error
B=|A-F1|

Square of Errors E=B^2

Deviation from Mean
D = Mean (F1)-F1

Squared Deviation
D1 = D^2

1

220

200.0

4.0

204.0

16.0

256.0

203.14

41266.35

2

212

208.0

4.8

212.8

0.8

0.6

194.34

37768.51

3

214

209.6

4.2

213.8

0.2

0.1

193.38

37396.30

4

222

211.4

3.7

215.0

7.0

48.4

192.10

36902.88

5

236

215.6

3.8

219.4

16.6

275.2

187.73

35242.56

6

221

223.8

4.7

228.4

7.4

55.3

178.70

31935.38

7

240

222.7

3.5

226.2

13.8

191.2

180.97

32749.24

8

244

229.6

4.2

233.8

10.2

104.2

173.35

30049.37

9

250

235.4

4.5

239.9

10.1

102.7

167.27

27980.41

10

266

241.2

4.8

246.0

20.0

400.2

161.15

25968.46

Total

2197.2

2239.3

102.2

1433.9

AVERAGE

399.49

407.14

18.58

260.70

33725.95

Forecast, Ft = At-1 + (1-)*Ft-1

Where

Ft = Forecast of this year

At-1 = Actual of previous year

Ft-1 = Forecast of previous year

Trend, Tt = *(Ft - Ft-1) + (1-)*Tt-1

F= 0.4 * 266 + 0.6* 241 = 251

T = 0.2 *(251-241) + 0.8* 4.8 = 5.8

Therefore, F1 = F+ T = 256.8

Actual Demand (A)

Forecast (F)

Trend
(T)

Adjusted Forecast
F1= (F+T)

Absoulute Error
B=|A-F1|

Square of Errors E=B^2

Deviation from Mean
D = Mean (F1)-F1

Squared Deviation
D1 = D^2

1

220

200.0

4.0

204.0

16.0

256.0

203.14

41266.35

2

212

208.0

4.8

212.8

0.8

0.6

194.34

37768.51

3

214

209.6

4.2

213.8

0.2

0.1

193.38

37396.30

4

222

211.4

3.7

215.0

7.0

48.4

192.10

36902.88

5

236

215.6

3.8

219.4

16.6

275.2

187.73

35242.56

6

221

223.8

4.7

228.4

7.4

55.3

178.70

31935.38

7

240

222.7

3.5

226.2

13.8

191.2

180.97

32749.24

8

244

229.6

4.2

233.8

10.2

104.2

173.35

30049.37

9

250

235.4

4.5

239.9

10.1

102.7

167.27

27980.41

10

266

241.2

4.8

246.0

20.0

400.2

161.15

25968.46

Total

2197.2

2239.3

102.2

1433.9

AVERAGE

399.49

407.14

18.58

260.70

33725.95