11. lodine decays with the emission of beta particles according to the equation
ID: 3507323 • Letter: 1
Question
11. lodine decays with the emission of beta particles according to the equation IJ'153 X + oa, + v-(neutrino, no mass) Find the nucleons and charge for X. 12. Calculate the N/Z ratio for the "Cs atom. A. 1. 567 B. 2.345 1.333 D. 1.666E. 1.886 13. Calculate is the value of "atomic mass unit" 2 1.660540 x 107 B. 1.660540 x 1024. g C. 1.660540 x 1024 kg D. 1.87960 x 1025 gE 1 689609 x 1025 g. 14. Calculate the total binding energy in kJ per mole of Calcium 40Ca2o. A. 1.450 x 1010 kJ mole1 B3.890x 1010 kJ mole-1 C. 3.300 x 1010 kJ mo D. 1.686 x 1010 kJ mole E. 2.646 x 1010 kJ mole-1 15. Calculate the total binding energy in MeV per atom of Rubidium 87Rbn A. 342.1. MeV B. 8.711. MeV C. 1801.7. MeV D 757.9. MeV E. 665.2. MeV 16. Calculate the binding energy in kJ per mole of nucleons in Bes atom. 5.44. x 10° kJ/ mol nucleons C) 6.06 x 1010 kJ/mol nucleons E. 5.36x 10° kJ/mol nucleons B. 6.24 x 103 kJ /mol nucleons D. 3.46 x 10 kJ/mol nucleonsExplanation / Answer
11. Option C is correct.
131-I-53 ----> 131-Xe-54 + Beta particle + Neutrino
12. Option C is correct.
N = 8
Z = 6
N/Z = 1.33
13. Option B is correct.
1 amu = 1.66054 X 10^-24 g
14. Option D is correct.
Calculate the binding energy in KJ per mole of Calcium 40Ca20
Neutrons = 40-20 = 20
20 X 1.007825 = 20.1565
20 * 1.008665 = 20.1733
20.1733 + 20.1565 = 40.3298
MW = 39.963
TOTAL BINDING ENERGY = 342.051941 Mev = 1.60218 X 10^-16
BINDING ENERGY PER NUCLEON = 8.551298525 Mev
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.