Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

re storé lll h, 20; April, th moving July forecast model compare w found in prob

ID: 354058 • Letter: R

Question

re storé lll h, 20; April, th moving July forecast model compare w found in problem 4? le Dest nverage mo ode 6.* A restaurant wants to forecast its weekl y sales Historical data (in dollars) for 15 weeks are sho below and can be found on worksheet OM6 Data Workbook at OM6 Online. (Not Vue copy the data from the worksheet to the appr Excel template.) a. Plot the data and provide insights about the ting C9P6 in the thing with oothing at Just Say series b. What is the forecast for week 16, using a two Sales c. What is the forecast for week 16, using a three. d. Compute MSE for the two- and three-period e. Find the best number of periods for the moving period moving average? period moving average? moving average models and compare your results average model based on MSE. Time Period Observation 1623 1533 1455 1386 1209 1348 ut the time ing a two- 4 ing a three- in

Explanation / Answer

PLEASE FIND ANSWERS TO QUESTION 6 ( items b, c,d,e,)

Please find below table with calculated values for reference .

Following formula may be noted:

i)Basis 2 year moving average ,

Ft = ( at-1 + at-2 ) /2

Ft = Forecast for period t

at-1 = Observation for period t-1

at-2 = Observation for period t- 2

ii)Basis 3 year moving average ,

Ft = ( at-1 + at-2 + at-3 ) / 3

Ft = Forecast for period t

At-1, at-2, at-3 = Observations for period t-1, t-2 and t-3 respectively

iii)Squared error for period t ( SEt) = Square ( Ft – At)

Time period

Observation

Forecast ( 2 period moving average)

Squared error ( SE)

Forecast ( 3 period moving average)

Squared error ( SE)

1

1623

2

1533

3

1455

1578

15129

4

1386

1494

11664

1537

22801.00

5

1209

1420.5

44732.25

1458

62001.00

6

1348

1297.5

2550.25

1350

4.00

7

1581

1278.5

91506.25

1314.33

71111.11

8

1332

1464.5

17556.25

1379.33

2240.44

9

1245

1456.5

44732.25

1420.33

30741.78

10

1521

1288.5

54056.25

1386.00

18225.00

11

1421

1383

1444

1366.00

3025.00

12

1502

1471

961

1395.67

11306.78

13

1656

1461.5

37830.25

1481.33

30508.44

14

1614

1579

1225

1526.33

7685.44

15

1332

1635

91809

1590.67

66908.44

16

1473

1534.00

SUM =

415195.75

326558.44

Accordingly .

b)Forecast for week 16 using 2 period moving average = 1473

c)Forecast for week 16 using 3 period moving average = 1534

d)Sum of Squared errors basis 2 year moving average = 415195.75

Therefore, Mean square Error ( MSE ) basis 2 year moving average = 415195.75 / 13 i.e number of observations = 31938.13

Sum of squared error basis 3 year moving average = 326558.44

Therefore ,

Mean Square error ( MSE ) basis 3 year moving average = 326558.44 / 12i.e. number of observations = 27213.20

e)Since MSE basis 3 year moving average ( i.e. 27213.20 ) < MSE basis 2 year moving average ( i.e. 31938.13) , the best number of periods for the moving average model is 3 years

Time period

Observation

Forecast ( 2 period moving average)

Squared error ( SE)

Forecast ( 3 period moving average)

Squared error ( SE)

1

1623

2

1533

3

1455

1578

15129

4

1386

1494

11664

1537

22801.00

5

1209

1420.5

44732.25

1458

62001.00

6

1348

1297.5

2550.25

1350

4.00

7

1581

1278.5

91506.25

1314.33

71111.11

8

1332

1464.5

17556.25

1379.33

2240.44

9

1245

1456.5

44732.25

1420.33

30741.78

10

1521

1288.5

54056.25

1386.00

18225.00

11

1421

1383

1444

1366.00

3025.00

12

1502

1471

961

1395.67

11306.78

13

1656

1461.5

37830.25

1481.33

30508.44

14

1614

1579

1225

1526.33

7685.44

15

1332

1635

91809

1590.67

66908.44

16

1473

1534.00

SUM =

415195.75

326558.44