i gotta modify the code using below options ====================================
ID: 3551865 • Letter: I
Question
i gotta modify the code using below options
=================================================
Write a program to implement Huffman coding and decoding (see pages 415-421) in Java. The program's input will be a command line file that can contain any char, but the only ones of interest in this assignment are the capital letters A through G. A COMMAND LINE FILE IS JUST THAT: A FILE NAME THAT IS ENTERED ON THE COMMAND LINE (you will use jGrasp with build/run args) PRIOR TO RUNNING THE PROGRAM. IF the file happens to contain chars other than A through G IGNORE THEM in a-d. Spaces should be ignored , for example , as should other chars! I want you to display (all answers MUST go to the console) using a menu system (from the console OR from a window) : a. The Huffman tree (see page 405 and 418 )itself (you may use the code from Tree.java if you wish.) You may assume that the tree will turn out to be no deeper than the tree shown on page 405. You may also assume that no individual char appears more than 10 times. The Huffman tree can be constructed using a priority queue. b. the code table that displays the encoding for each of the chars A through G (see page 416-417.) EXERCISE OPTION a BEFORE b. c. the binary encoding of the portion of the file that only contains the chars A through G (after each eight bits leave a space and print only 3 bytes per line.) The binary encoding may not necessarily display a "full" byte at the end (see page 417.) c SHOULD BE EXERCISED AFTER b. d. the A-G portion of the original file that is calculated by using the HUFFMAN TREE from part a and the binary encoding from part c (don't just print the file back from the original; you must use the HUFFMAN TREE to do this.) So you want to "read" the binary encoding from part c (using the HUFFMAN TREE from part a to reconstruct the portion of the file that consists of A through G.) BASICALLY YOU ARE DEOCODING THE PORTION OF THE FILE THAT CONSISTS OF THE CHARS A-G. AS YOU READ THE ENCODED FILE YOU ARE MARCHING DOWN THE HUFFMAN TREE--WHEN YOU REACH A LEAF, YOU CAN FIGURE OUT WHICH CHAR IT IS AND YOU PRINT THAT CHAR.
===================================================================================================
// tree.java // demonstrates binary tree // to run this program: C>java TreeApp import java.io.*; import java.util.*; // for Stack class //////////////////////////////////////////////////////////////// class Node { public int iData; // data item (key) public double dData; // data item public Node leftChild; // this node's left child public Node rightChild; // this node's right child public void displayNode() // display ourself { System.out.print('{'); System.out.print(iData); System.out.print(", "); System.out.print(dData); System.out.print("} "); } } // end class Node //////////////////////////////////////////////////////////////// class Tree { private Node root; // first node of tree // ------------------------------------------------------------- public Tree() // constructor { root = null; } // no nodes in tree yet // ------------------------------------------------------------- public Node find(int key) // find node with given key { // (assumes non-empty tree) Node current = root; // start at root while(current.iData != key) // while no match, { if(key < current.iData) // go left? current = current.leftChild; else // or go right? current = current.rightChild; if(current == null) // if no child, return null; // didn't find it } return current; // found it } // end find() // ------------------------------------------------------------- public void insert(int id, double dd) { Node newNode = new Node(); // make new node newNode.iData = id; // insert data newNode.dData = dd; if(root==null) // no node in root root = newNode; else // root occupied { Node current = root; // start at root Node parent; while(true) // (exits internally) { parent = current; if(id < current.iData) // go left? { current = current.leftChild; if(current == null) // if end of the line, { // insert on left parent.leftChild = newNode; return; } } // end if go left else // or go right? { current = current.rightChild; if(current == null) // if end of the line { // insert on right parent.rightChild = newNode; return; } } // end else go right } // end while } // end else not root } // end insert() // ------------------------------------------------------------- public boolean delete(int key) // delete node with given key { // (assumes non-empty list) Node current = root; Node parent = root; boolean isLeftChild = true; while(current.iData != key) // search for node { parent = current; if(key < current.iData) // go left? { isLeftChild = true; current = current.leftChild; } else // or go right? { isLeftChild = false; current = current.rightChild; } if(current == null) // end of the line, return false; // didn't find it } // end while // found node to delete // if no children, simply delete it if(current.leftChild==null && current.rightChild==null) { if(current == root) // if root, root = null; // tree is empty else if(isLeftChild) parent.leftChild = null; // disconnect else // from parent parent.rightChild = null; } // if no right child, replace with left subtree else if(current.rightChild==null) if(current == root) root = current.leftChild; else if(isLeftChild) parent.leftChild = current.leftChild; else parent.rightChild = current.leftChild; // if no left child, replace with right subtree else if(current.leftChild==null) if(current == root) root = current.rightChild; else if(isLeftChild) parent.leftChild = current.rightChild; else parent.rightChild = current.rightChild; else // two children, so replace with inorder successor { // get successor of node to delete (current) Node successor = getSuccessor(current); // connect parent of current to successor instead if(current == root) root = successor; else if(isLeftChild) parent.leftChild = successor; else parent.rightChild = successor; // connect successor to current's left child successor.leftChild = current.leftChild; } // end else two children // (successor cannot have a left child) return true; // success } // end delete() // ------------------------------------------------------------- // returns node with next-highest value after delNode // goes to right child, then right child's left descendents private Node getSuccessor(Node delNode) { Node successorParent = delNode; Node successor = delNode; Node current = delNode.rightChild; // go to right child while(current != null) // until no more { // left children, successorParent = successor; successor = current; current = current.leftChild; // go to left child } // if successor not if(successor != delNode.rightChild) // right child, { // make connections successorParent.leftChild = successor.rightChild; successor.rightChild = delNode.rightChild; } return successor; } // ------------------------------------------------------------- public void traverse(int traverseType) { switch(traverseType) { case 1: System.out.print(" Preorder traversal: "); preOrder(root); break; case 2: System.out.print(" Inorder traversal: "); inOrder(root); break; case 3: System.out.print(" Postorder traversal: "); postOrder(root); break; } System.out.println(); } // ------------------------------------------------------------- private void preOrder(Node localRoot) { if(localRoot != null) { System.out.print(localRoot.iData + " "); preOrder(localRoot.leftChild); preOrder(localRoot.rightChild); } } // ------------------------------------------------------------- private void inOrder(Node localRoot) { if(localRoot != null) { inOrder(localRoot.leftChild); System.out.print(localRoot.iData + " "); inOrder(localRoot.rightChild); } } // ------------------------------------------------------------- private void postOrder(Node localRoot) { if(localRoot != null) { postOrder(localRoot.leftChild); postOrder(localRoot.rightChild); System.out.print(localRoot.iData + " "); } } // ------------------------------------------------------------- public void displayTree() { Stack globalStack = new Stack(); globalStack.push(root); int nBlanks = 32; boolean isRowEmpty = false; System.out.println( "......................................................"); while(isRowEmpty==false) { Stack localStack = new Stack(); isRowEmpty = true; for(int j=0; j<nBlanks; j++) System.out.print(' '); while(globalStack.isEmpty()==false) { Node temp = (Node)globalStack.pop(); if(temp != null) { System.out.print(temp.iData); localStack.push(temp.leftChild); localStack.push(temp.rightChild); if(temp.leftChild != null || temp.rightChild != null) isRowEmpty = false; } else { System.out.print("--"); localStack.push(null); localStack.push(null); } for(int j=0; j<nBlanks*2-2; j++) System.out.print(' '); } // end while globalStack not empty System.out.println(); nBlanks /= 2; while(localStack.isEmpty()==false) globalStack.push( localStack.pop() ); } // end while isRowEmpty is false System.out.println( "......................................................"); } // end displayTree() // ------------------------------------------------------------- } // end class Tree //////////////////////////////////////////////////////////////// class TreeApp { public static void main(String[] args) throws IOException { int value; Tree theTree = new Tree(); theTree.insert(50, 1.5); theTree.insert(25, 1.2); theTree.insert(75, 1.7); theTree.insert(12, 1.5); theTree.insert(37, 1.2); theTree.insert(43, 1.7); theTree.insert(30, 1.5); theTree.insert(33, 1.2); theTree.insert(87, 1.7); theTree.insert(93, 1.5); theTree.insert(97, 1.5); while(true) { System.out.print("Enter first letter of show, "); System.out.print("insert, find, delete, or traverse: "); int choice = getChar(); switch(choice) { case 's': theTree.displayTree(); break; case 'i': System.out.print("Enter value to insert: "); value = getInt(); theTree.insert(value, value + 0.9); break; case 'f': System.out.print("Enter value to find: "); value = getInt(); Node found = theTree.find(value); if(found != null) { System.out.print("Found: "); found.displayNode(); System.out.print(" "); } else System.out.print("Could not find "); System.out.print(value + ' '); break; case 'd': System.out.print("Enter value to delete: "); value = getInt(); boolean didDelete = theTree.delete(value); if(didDelete) System.out.print("Deleted " + value + ' '); else System.out.print("Could not delete "); System.out.print(value + ' '); break; case 't': System.out.print("Enter type 1, 2 or 3: "); value = getInt(); theTree.traverse(value); break; default: System.out.print("Invalid entry "); } // end switch } // end while } // end main() // ------------------------------------------------------------- public static String getString() throws IOException { InputStreamReader isr = new InputStreamReader(System.in); BufferedReader br = new BufferedReader(isr); String s = br.readLine(); return s; } // ------------------------------------------------------------- public static char getChar() throws IOException { String s = getString(); return s.charAt(0); } //------------------------------------------------------------- public static int getInt() throws IOException { String s = getString(); return Integer.parseInt(s); } // ------------------------------------------------------------- } // end class TreeApp //////////////////////////////////////////////////////////////// Explanation / Answer
the answer is very big and please check the code
http://pastebin.com/KrW7SKGY
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.