Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Use and implement the following pseudocode for Dijkstra\'s Algorithm and convert

ID: 3575314 • Letter: U

Question

 Use and implement the following pseudocode for Dijkstra's Algorithm and convert it into working Java code. Make sure you follow the structure of the pseudocode.       function Dijkstra(Graph, source):          create vertex set Q          for each vertex v in Graph:             // Initialization            dist[v]  INFINITY                  // Unknown distance from source to v            prev[v]  UNDEFINED                 // Previous node in optimal path from source            add v to Q                          // All nodes initially in Q (unvisited nodes)         dist[source]  0                        // Distance from source to source              while Q is not empty:           u  vertex in Q with min dist[u]    // Source node will be selected first           remove u from Q                       for each neighbor v of u:           // where v is still in Q.               alt  dist[u] + length(u, v)               if alt < dist[v]:               // A shorter path to v has been found                   dist[v]  alt                    prev[v]  u         return dist[], prev[] 

Explanation / Answer

import java.util.*;
import java.lang.*;
import java.io.*;

class ShortestPath
{
static final int V=6;
int minDistance(int dist[], Boolean sptSet[])
{
int min = Integer.MAX_VALUE, min_index=-1;

for (int v = 0; v < V; v++)
if (sptSet[v] == false && dist[v] <= min)
{
min = dist[v];
min_index = v;
}

return min_index;
}
void printSolution(int dist[], int n)
{
System.out.println("Vertex Distance from Source");
for (int i = 0; i < V; i++)
System.out.println(i+" "+dist[i]);
}

void dijkstra(int graph[][], int src)
{
int dist[] = new int[V];
Boolean sptSet[] = new Boolean[V];

for (int i = 0; i < V; i++)
{
dist[i] = Integer.MAX_VALUE;
sptSet[i] = false;
}
dist[src] = 0;
for (int count = 0; count < V-1; count++)
{
int u = minDistance(dist, sptSet);
sptSet[u] = true;
for (int v = 0; v < V; v++)

if (!sptSet[v] && graph[u][v]!=0 &&
dist[u] != Integer.MAX_VALUE &&
dist[u]+graph[u][v] < dist[v])
dist[v] = dist[u] + graph[u][v];
}

printSolution(dist, V);
}
public static void main (String[] args)
{
/* Let us create the example graph discussed above */
int graph[][] = new int[][]{{0, 4, 0, 0, 0, 0, 0, 8, 0},
{4, 0, 8, 0, 0, 0, 0, 11, 0},
{0, 8, 0, 7, 0, 4, 0, 0, 2},
{0, 0, 7, 0, 9, 14, 0, 0, 0},
{0, 0, 0, 9, 0, 10, 0, 0, 0},
{0, 0, 4, 14, 10, 0, 2, 0, 0},
};
ShortestPath t = new ShortestPath();
t.dijkstra(graph, 0);
}
}