Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

In Java Language Part I: Finding vertices reachable by length-2 paths (2 points)

ID: 3581991 • Letter: I

Question

In Java Language

Part I: Finding vertices reachable by length-2 paths (2 points)

----------------------------------------------------------------

Fill in the body of the method UDGraph.length2Paths(). This method constructs

and returns a UDGraph with the same number of vertices as "this" UDGraph. The

new graph contains the edge (v, w) if and only if there is a path of length 2

from v to w in "this" graph--in other words, there is some vertex u such that

(v, u) and (u, w) are both edges of "this" graph.

Note that a length-2 path can start and end at the same vertex: if "this"

graph contains the edges (v, w) and (w, v), then it contains a length-2 path

from v to itself, and the new graph should contain the self-edge

(v, v). Moreover, if "this" graph contains the self-edge (v, v), then

is a length-2 path, so the new graph should contain (v, v).

If a vertex w can be reached from a vertex v by a length-1 path (one edge) in

"this" graph but _not_ by a length-2 path, the new graph should _not_ contain

(v, w).

Try to think of the fastest, simplest code for length2Paths(). It's possible

to do it with a relatively simple triply-nested loop. You will have to explain

your algorithm to your TA. If your TA thinks your algorithm is too slow,

you'll be asked to do it again.

Your solution should not change "this" graph.

Part II: Finding vertices reachable by length-k paths (2 points)

----------------------------------------------------------------

Fill in the body of the method UDGraph.paths(int length). This method creates

and returns a UDGraph with the same number of vertices as "this" UDGraph. The

new graph contains the edge (v, w) if and only if there is a path of length

"length" (the parameter) from v to w in "this" graph. Your method should work

for any "length" of 2 or greater.

Note that a length-k path is permitted to use an edge multiple times. For

example, is a valid length-5 path.

Hint: First calculate all the paths of length (k - 1). Once you know these,

it's straightforward to compute all the paths of length k in a manner similar

to what you did for Part I.

There is code in UDGraph.main() for both Parts I and II.

Code for copying here:

/* UDGraph.java */

import java.io.*;
import java.util.*;

/**
* The UDGraph class represents an unweighted directed graph.
* Implemented with an adjacency matrix.
*/

public class UDGraph
{
/**
   * adjMatrix references the adjacency matrix of the graph.
   * vertices is the number of vertices in the graph.
   * edges is the number of edges in the graph.
   *
   * DO NOT CHANGE THE FOLLOWING FIELD DECLARATIONS.
   */

private boolean[][] adjMatrix;
private int vertices;
private int edges;                  

/**
   * Constructs a graph with n vertices and no edges.
   */
public UDGraph(int n) {
    vertices = n;
    edges = 0;
    adjMatrix = new boolean[n][n];
    for (int i = 0; i < vertices; i++ ) {
      for (int j = 0; j < vertices; j++ ) {
adjMatrix[i][j] = false;
      }
    }
}

/**
   * Returns the number of vertices.
   * @return this graph's vertex count.
   */
public int getNumVertices() {
    return vertices;
}

/**
   * Returns the number of edges.
   * @return this graph's edge count.
   */
public int getNumEdges() {
    return edges;
}

/**
   * Returns true if v is a valid vertex number; false otherwise.
   * @param v the vertex.
   * @return boolean indicating existence of vertex number v.
   */
public boolean validVertex(int v) {
    return (v >= 0) && (v < vertices);
}

/**
   * Returns true if edge (origin, destination) exists; false otherwise.
   * @param origin the origin vertex.
   * @param destination the destination vertex.
   * @return boolean indicating the presence of edge (origin, destination).
   */
public boolean hasEdge(int origin, int destination) {
    if (validVertex(origin) && validVertex(destination)) {
      return adjMatrix[origin][destination];
    } else {
      return false;
    }
}

/**
   * Creates the edge (origin, destination). If the edge did not already
   *    exists, increments the edge count.
   * @param origin the origin vertex.
   * @param edstination the destination vertex.
   */
public void addEdge(int origin, int destination) {
    if (validVertex(origin) && validVertex(destination)) {
      if (!adjMatrix[origin][destination]) {
adjMatrix[origin][destination] = true;
        edges++;
      }
    }   
}

/**
   * Deletes the edge (origin, destination). If the edge existed, decrements
   *    the edge count.
   * @param origin the origin vertex.
   * @param destination the destination vertex.
   */
public void removeEdge(int origin, int destination) {
    if (validVertex(origin) && validVertex(destination)) {
      if (adjMatrix[origin][destination]) {
adjMatrix[origin][destination] = false;
edges--;
      }
    }       
}

/**
   * Returns a new UDGraph with the same vertices as "this" UDGraph.
   *    The new graph has an edge (v, w) if and only if there is a path of
   *    length 2 from v to w in "this" graph.
   *    *** DO NOT CHANGE "this" GRAPH!!! ***
   * @return the new UDGraph.
   */
public UDGraph length2Paths() {
    UDGraph newGraph = new UDGraph(vertices);
    // Put your answer to Part I here.


    return newGraph;
}

/**
   * Returns a new UDGraph with the same vertices as "this" UDGraph.
   *    The new graph has an edge (v, w) if and only if there is a path of
   *    length "length" from v to w in "this" graph.
   * @param length the length of paths used to construct the new graph.
   * @return the new UDGraph.
   */
public UDGraph paths(int length) {
    UDGraph newGraph = new UDGraph(vertices);
    // Put your answer to Part II here.


    return newGraph;
}

/**
   * Returns a String representing the adjacency matrix, including the number
   *    of vertices and edges.
   * @return a String representing the adjacency matrix.
   */
public String toString() {
    int i, j;
    String s = vertices + " vertices and " + edges + " edges ";
    for (i = 0; i < vertices; i++) {
      for (j = 0; j < vertices - 1; j++) {
s = s + (adjMatrix[i][j] ? "t" : ".") + " ";
      }
      s = s + (adjMatrix[i][j] ? "t" : ".") + " ";
    }
    return s;
}


public static void main(String[] args) {

    System.out.println(" *** Square the unweighted directed graph! *** ");

    // Create an 11-vertex graph.
    System.out.println("Creating a graph with 11 vertices");
    UDGraph graph = new UDGraph(11);
    graph.addEdge(0, 8);
    graph.addEdge(1, 0);
    graph.addEdge(1, 3);
    graph.addEdge(2, 0);
    graph.addEdge(3, 2);
    graph.addEdge(3, 5);
    graph.addEdge(4, 2);
    graph.addEdge(4, 5);
    graph.addEdge(5, 7);
    graph.addEdge(5, 9);
    graph.addEdge(6, 4);
    graph.addEdge(6, 7);
    graph.addEdge(8, 4);
    graph.addEdge(8, 6);
    graph.addEdge(8, 10);
    graph.addEdge(9, 1);
    graph.addEdge(10, 6);

    boolean goodJob = true;

    String t1String = "11 vertices and 17 edges . . . . . . . . t . . " +
      "t . . t . . . . . . . t . . . . . . . . . . . . t . . t . . . . . " +
      ". . t . . t . . . . . . . . . . . . t . t . . . . . t . . t . . . " +
      ". . . . . . . . . . . . . . . t . t . . . t . t . . . . . . . . . " +
      ". . . . . . t . . . . ";
    System.out.println(" The original graph is " + graph);
    if (!t1String.equals(graph.toString())) {
      System.out.println("Error: the original graph should be " +
                         t1String);
      goodJob = false;
    }

    // Do length-2 paths work?
    String t2String = "11 vertices and 25 edges . . . . t . t . . . t " +
      ". . t . . t . . t . . . . . . . . . . t . . t . . . . . . t . t . " +
      "t . . . . . . t . t . . t . . . . . . . . . . . t . . t . . . . . " +
      ". . . . . . . . . . . . . t . t t t t . . . t . . t . . . . . . . " +
      ". . . . t . . t . . . ";
    System.out.println("Testing length-2 paths.");
    System.out.println("The graph of length-2 paths is " +
                       graph.length2Paths());
    if (!t2String.equals(graph.length2Paths().toString())) {
      System.out.println("Error: the length-2 path graph should be " +
                         t2String);
      goodJob = false;
    }

    // Do length-3 paths work?
    String t3String = "11 vertices and 34 edges . . t . t t t t . . . " +
      "t . . . t . t t . t t . . . . t . t . . . t . t . . . . . . t . . " +
      ". t . . . . . . t . . t . . t . . . . . . . t . . . . . . t . t . " +
      ". . . . . . . . . . . t . t . t t . t . t . . . t . . t . . t . . " +
      ". . t . . t . . . . . ";
    System.out.println("Testing length-3 paths.");
    System.out.println("The graph of length-3 paths is " +
                       graph.paths(3));
    if (!t3String.equals(graph.paths(3).toString())) {
      System.out.println("Error: the length-3 path graph should be " +
                         t3String);
      goodJob = false;
    }

    // Do length-4 paths work?
    String t4String = "11 vertices and 49 edges t . t . t t . t . t . " +
      ". t t . t t t t t . . . . t . t t t t . . . t . . t t . t . . . t " +
      "t . . t t . t . . . t . . t . . t . . t . . . t . . . . . . t . . " +
      ". . . . . . . . . . . t t t . . t . t t t . t . . . t . t t . t t " +
      "t . . . . . . t . t . ";
    System.out.println("Testing length-4 paths.");
    System.out.println("The graph of length-4 paths is " +
                       graph.paths(4));
    if (!t4String.equals(graph.paths(4).toString())) {
      System.out.println("Error: the length-4 path graph should be " +
                         t4String);
      goodJob = false;
    }

    // Do length-5 paths work?
    String t5String = "11 vertices and 63 edges t t t . . t . t t t . " +
      "t . t t t t t t . t t t . t . t t . t . t . . . t . t t t t t . . " +
      ". . t . t t t t t . . t . . . t . t t . t t t . . t t . t . . . t " +
      ". . . . . . . . . . . t t . t t . t t t t t . t t . t t t t t . . " +
      ". t . . . . . . t . . ";
    System.out.println("Testing length-5 paths.");
    System.out.println("The graph of length-5 paths is " +
                       graph.paths(5));
    if (!t5String.equals(graph.paths(5).toString())) {
      System.out.println("Error: the length-5 path graph should be " +
                         t5String);
      goodJob = false;
    }

    if (goodJob) {
      System.out.println(" *** Good Job! *** ");
    }
}
}

Explanation / Answer

Part 1:

// Java program to check if there is exist a path between two vertices

// of a graph.

import java.io.*;

import java.util.*;

import java.util.LinkedList;

// This class represents a directed graph using adjacency list

// representation

class Graph

{

    private int V;   // No. of vertices

    private LinkedList<Integer> adj[]; //Adjacency List

    //Constructor

    Graph(int v)

    {

        V = v;

        adj = new LinkedList[v];

        for (int i=0; i<v; ++i)

            adj[i] = new LinkedList();

    }

    //Function to add an edge into the graph

    void addEdge(int v,int w) {   adj[v].add(w);   }

    //prints BFS traversal from a given source s

    Boolean isReachable(int s, int d)

    {

        LinkedList<Integer>temp;

        // Mark all the vertices as not visited(By default set

        // as false)

        boolean visited[] = new boolean[V];

        // Create a queue for BFS

        LinkedList<Integer> queue = new LinkedList<Integer>();

        // Mark the current node as visited and enqueue it

        visited[s]=true;

        queue.add(s);

        // 'i' will be used to get all adjacent vertices of a vertex

        Iterator<Integer> i;

        while (queue.size()!=0)

        {

            // Dequeue a vertex from queue and print it

            s = queue.poll();

            int n;

            i = adj[s].listIterator();

            // Get all adjacent vertices of the dequeued vertex s

            // If a adjacent has not been visited, then mark it

            // visited and enqueue it

            while (i.hasNext())

            {

                n = i.next();

                // If this adjacent node is the destination node,

                // then return true

                if (n==d)

                    return true;

                // Else, continue to do BFS

                if (!visited[n])

                {

                    visited[n] = true;

                    queue.add(n);

                }

            }

        }

        // If BFS is complete without visited d

        return false;

    }

    // Driver method

    public static void main(String args[])

    {

        // Create a graph given in the above diagram

        Graph g = new Graph(4);

        g.addEdge(0, 1);

        g.addEdge(0, 2);

        g.addEdge(1, 2);

        g.addEdge(2, 0);

        g.addEdge(2, 3);

        g.addEdge(3, 3);

        int u = 1;

        int v = 3;

        if (g.isReachable(u, v))

            System.out.println("There is a path from " + u +" to " + v);

        else

            System.out.println("There is no path from " + u +" to " + v);;

        u = 3;

        v = 1;

        if (g.isReachable(u, v))

            System.out.println("There is a path from " + u +" to " + v);

        else

            System.out.println("There is no path from " + u +" to " + v);;

    }

}

Part 2:

// Java program to count walks from u to v with exactly k edges

import java.util.*;

import java.lang.*;

import java.io.*;

class KPaths

{

    static final int V = 4; //Number of vertices

    // A naive recursive function to count walks from u

    // to v with k edges

    int countwalks(int graph[][], int u, int v, int k)

    {

        // Base cases

        if (k == 0 && u == v)           return 1;

        if (k == 1 && graph[u][v] == 1) return 1;

        if (k <= 0)                     return 0;

        // Initialize result

        int count = 0;

        // Go to all adjacents of u and recur

        for (int i = 0; i < V; i++)

            if (graph[u][i] == 1) // Check if is adjacent of u

                count += countwalks(graph, i, v, k-1);

        return count;

    }

    // Driver method

    public static void main (String[] args) throws java.lang.Exception

    {

        /* Let us create the graph shown in above diagram*/

        int graph[][] =new int[][] { {0, 1, 1, 1},

            {0, 0, 0, 1},

            {0, 0, 0, 1},

            {0, 0, 0, 0}

        };

        int u = 0, v = 3, k = 2;

        KPaths p = new KPaths();

        System.out.println(p.countwalks(graph, u, v, k));

    }

}

// Java program to check if there is exist a path between two vertices

// of a graph.

import java.io.*;

import java.util.*;

import java.util.LinkedList;

// This class represents a directed graph using adjacency list

// representation

class Graph

{

    private int V;   // No. of vertices

    private LinkedList<Integer> adj[]; //Adjacency List

    //Constructor

    Graph(int v)

    {

        V = v;

        adj = new LinkedList[v];

        for (int i=0; i<v; ++i)

            adj[i] = new LinkedList();

    }

    //Function to add an edge into the graph

    void addEdge(int v,int w) {   adj[v].add(w);   }

    //prints BFS traversal from a given source s

    Boolean isReachable(int s, int d)

    {

        LinkedList<Integer>temp;

        // Mark all the vertices as not visited(By default set

        // as false)

        boolean visited[] = new boolean[V];

        // Create a queue for BFS

        LinkedList<Integer> queue = new LinkedList<Integer>();

        // Mark the current node as visited and enqueue it

        visited[s]=true;

        queue.add(s);

        // 'i' will be used to get all adjacent vertices of a vertex

        Iterator<Integer> i;

        while (queue.size()!=0)

        {

            // Dequeue a vertex from queue and print it

            s = queue.poll();

            int n;

            i = adj[s].listIterator();

            // Get all adjacent vertices of the dequeued vertex s

            // If a adjacent has not been visited, then mark it

            // visited and enqueue it

            while (i.hasNext())

            {

                n = i.next();

                // If this adjacent node is the destination node,

                // then return true

                if (n==d)

                    return true;

                // Else, continue to do BFS

                if (!visited[n])

                {

                    visited[n] = true;

                    queue.add(n);

                }

            }

        }

        // If BFS is complete without visited d

        return false;

    }

    // Driver method

    public static void main(String args[])

    {

        // Create a graph given in the above diagram

        Graph g = new Graph(4);

        g.addEdge(0, 1);

        g.addEdge(0, 2);

        g.addEdge(1, 2);

        g.addEdge(2, 0);

        g.addEdge(2, 3);

        g.addEdge(3, 3);

        int u = 1;

        int v = 3;

        if (g.isReachable(u, v))

            System.out.println("There is a path from " + u +" to " + v);

        else

            System.out.println("There is no path from " + u +" to " + v);;

        u = 3;

        v = 1;

        if (g.isReachable(u, v))

            System.out.println("There is a path from " + u +" to " + v);

        else

            System.out.println("There is no path from " + u +" to " + v);;

    }

}

Part 2:

// Java program to count walks from u to v with exactly k edges

import java.util.*;

import java.lang.*;

import java.io.*;

class KPaths

{

    static final int V = 4; //Number of vertices

    // A naive recursive function to count walks from u

    // to v with k edges

    int countwalks(int graph[][], int u, int v, int k)

    {

        // Base cases

        if (k == 0 && u == v)           return 1;

        if (k == 1 && graph[u][v] == 1) return 1;

        if (k <= 0)                     return 0;

        // Initialize result

        int count = 0;

        // Go to all adjacents of u and recur

        for (int i = 0; i < V; i++)

            if (graph[u][i] == 1) // Check if is adjacent of u

                count += countwalks(graph, i, v, k-1);

        return count;

    }

    // Driver method

    public static void main (String[] args) throws java.lang.Exception

    {

        /* Let us create the graph shown in above diagram*/

        int graph[][] =new int[][] { {0, 1, 1, 1},

            {0, 0, 0, 1},

            {0, 0, 0, 1},

            {0, 0, 0, 0}

        };

        int u = 0, v = 3, k = 2;

        KPaths p = new KPaths();

        System.out.println(p.countwalks(graph, u, v, k));

    }

}

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote