Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

T-Mobile 9:46 AM bblearn.nau.edu EE 364 Lab 7 Magnetic Fields Lab Overview This

ID: 3599573 • Letter: T

Question

T-Mobile 9:46 AM bblearn.nau.edu EE 364 Lab 7 Magnetic Fields Lab Overview This lab is designed to enhance the understanding of static magnetic fields due to current flow within a line. This exercise will consist of coding within MATLAB to visual field lines. The goal is to consider a line containing charged particles and the magnetic dipole. Rules of Engagement No more than 2 people in a group. Open books and open Internet. Each group is expected to spend 2-3 hours total on this exercise. All code should be organized into a single MATLAB file. (due by next lab) .Put names and CUPT IDs of the lab members into the file header Materials: Computer with Matlab . Steps: 1. Discuss matlab template examples. 2. Magnetic field from Biot-Savart law 3. Students write code in matlab to plot the magnetic fields a. Plot the 3D magnetic field current lowing along z-axis i. Grid from -10 to 10 on the x, y, and z-axes in increments of i ii Atz-0 (no current), z0I is in +z, z0 I is in-z. b. Plot the 3D magnetic field lines of dipole centered at origin i. Loop is in the x-y plane. ii. Radius of loop is 5 iii. Current can flow either direction. iv. Use differential angle of d: 10 loop from /10 to 2 around the loop. v. dl =-a sin + a cos + 02 (current is counterclockwise) vi put loop into (x.y.z) coordinates, find R unit vector, find cross product. vii. Hint i =-cos9) j = ( . k = (x-a sin ) R R=i+j+k Grading (100pts): Subt single matab

Explanation / Answer

package com;
import java.util.ArrayList;

public class ArrayWithExponentAsIndexPolynomial implements PolynomialInterface

{

int polynomial[];

int highExp;

ArrayWithExponentAsIndexPolynomial()

{

polynomial=new int[200];

}

ArrayWithExponentAsIndexPolynomial(String pol)

{

polynomial=new int[200];

highExp=0;

int co=0;//Coefficient

int exp=0;//exponent

//Convert the polynomial string into linked list of polynomial terms

for(int i=0;i<pol.length();i++)

{

co=0;

exp=0;

//Find coefficient

while(pol.charAt(i)!='x' && pol.charAt(i)!='X' )

{

if(pol.charAt(i)=='-')

{

i++;

while(i<pol.length())

{

if(pol.charAt(i)!='x' && pol.charAt(i)!='X' )

{

String sub=pol.substring(i,i+1);

co=co*10+Integer.parseInt(sub);

}

else

break;

i++;

}

co=co*-1;

}

else if (pol.charAt(i)=='+')

{

i++;

}

else

{

String sub=pol.substring(i,i+1);

co=co*10+Integer.parseInt(sub);

i++;

}

if(i>=pol.length())

break;

}

i++;//skip x

if(i==pol.length())

{

if(pol.charAt(i-1)=='x' || pol.charAt(i-1)=='X')

exp=1;

}

i++;//skip ^

if(i<pol.length())

while(pol.charAt(i)!='-' && pol.charAt(i)!='+' )

{

String sub=pol.substring(i,i+1);

exp=exp*10+Integer.parseInt(sub);

i++;

if(i>=pol.length())

break;

}

if(highExp<exp)

highExp=exp;

addATerm(exp,co);

i--;

}

}

// stores the coefficient at index(exp)

void addATerm(int exp,int co)

{

// store the coefficient at index(exp)

polynomial[exp]=co;

}

int getHigh()

{

return highExp;

}

@Override

//Adds two polynomials and returns the resultant polynomial

public PolynomialInterface add(PolynomialInterface other)

{

int high;

ArrayWithExponentAsIndexPolynomial temp=new ArrayWithExponentAsIndexPolynomial();

ArrayWithExponentAsIndexPolynomial otherPoly=(ArrayWithExponentAsIndexPolynomial)other;

if(this.getHigh()<otherPoly.getHigh())

{

high=otherPoly.getHigh();

temp.highExp=otherPoly.getHigh();

}

else

{

high=this.getHigh();

temp.highExp=this.getHigh();

}

for(int i=0;i<=high;i++)

{

if(this.polynomial[i]!=0 && otherPoly.polynomial[i]!=0)

{

temp.polynomial[i]=this.polynomial[i]+otherPoly.polynomial[i];

}

else if (this.polynomial[i]==0 && otherPoly.polynomial[i]!=0)

{

temp.polynomial[i]=otherPoly.polynomial[i];

}

else if (this.polynomial[i]!=0 && otherPoly.polynomial[i]==0)

{

temp.polynomial[i]=this.polynomial[i];

}

}

return temp;

}

@Override

//Substracts one polynomial from another and returns the resultant polynomial

public PolynomialInterface subtract(PolynomialInterface other)

{

int high;

ArrayWithExponentAsIndexPolynomial temp=new ArrayWithExponentAsIndexPolynomial();

ArrayWithExponentAsIndexPolynomial otherPoly=(ArrayWithExponentAsIndexPolynomial)other;

if(this.getHigh()<otherPoly.getHigh())

{

high=otherPoly.getHigh();

temp.highExp=otherPoly.getHigh();

}

else

{

high=this.getHigh();

temp.highExp=this.getHigh();

}

for(int i=0;i<=high;i++)

{

if(this.polynomial[i]!=0 && otherPoly.polynomial[i]!=0)

{

temp.polynomial[i]=this.polynomial[i]-otherPoly.polynomial[i];

}

else if (this.polynomial[i]==0 && otherPoly.polynomial[i]!=0)

{

temp.polynomial[i]=0-otherPoly.polynomial[i];

}

else if (this.polynomial[i]!=0 && otherPoly.polynomial[i]==0)

{

temp.polynomial[i]=this.polynomial[i];

}

}

return temp;

}

public String toString()

{

String poly="";

//Convert the linked list into polynomial string

for(int i=this.getHigh();i>=0;i--)

{

if(polynomial[i]!=0)

{

if(i==1)

{

if(polynomial[i]<0)

poly=poly+"-"+polynomial[i]*-1+"x";

else

poly=poly+polynomial[i]+"x";

}

else if(i!=0)

{

if(polynomial[i]<0)

poly=poly+"-"+polynomial[i]*-1+"x^"+i;

else

{

if(i!=this.getHigh())

poly=poly+"+"+polynomial[i]+"x^"+i;

else

poly=poly+polynomial[i]+"x^"+i;

}

}

else

{

if(polynomial[i]<0)

poly=poly+"-"+polynomial[i]*-1;

else

poly=poly+"+"+polynomial[i];

}

}

}

return poly;

}


}