Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

1) Heap Operation This question is designed to help you get a better understandi

ID: 3607600 • Letter: 1

Question

1) Heap Operation

This question is designed to help you get a better understanding of basic heap operations.
You will be given queries of  types:

"1 v " - Add an element  to the heap.

"2 v " - Delete the element  from the heap.

"3" - Print the minimum of all the elements in the heap.

NOTE: It is guaranteed that the element to be deleted will be there in the heap. Also, at any instant, only distinct elements will be in the heap.

Input Format

The first line contains the number of queries, Q .
Each of the next Q lines contains a single query of any one of the  above mentioned types.

Output Format

For each query of type 3, print the minimum value on a single line.

Explanation

After the first 2 queries, the heap contains {4,9}. Printing the minimum gives 4 as the output. Then, the 4th query deletes 4 from the heap, and the 5th query gives 9 as the output.

a. Implement it with Linked List (heap_linkedlist.cpp)
b. Implement it with binary heap tree (heap_binary_tree.cpp)

__________________________________________

#include
#include
#include
#include
#include
using namespace std;


int main() {
/* Enter your code here. Read input from STDIN. Print output to STDOUT */
return 0;
}

Explanation / Answer

// C++ Program to Implement with Binary Heap tree

#include <iostream>

#include <cstdlib>

#include <vector>

#include <iterator>

using namespace std;

/*

* Class Declaration

*/

class BinaryHeap

{

    private:

       vector <int> heap;

       int left(int parent);

       int right(int parent);

       int parent(int child);

        void heapifyup(int index);

        void heapifydown(int index);

    public:

       BinaryHeap()

        {}

        void Insert(int element);

        void DeleteMin();

        int ExtractMin();

        void DisplayHeap();

        int Size();

};

/*

* Return Heap Size

*/

int BinaryHeap::Size()

{

    return heap.size();

}

/*

* Insert Element into a Heap

*/

void BinaryHeap::Insert(int element)

{

    heap.push_back(element);

    heapifyup(heap.size() -1);

}

/*

* Delete Minimum Element

*/

void BinaryHeap::DeleteMin()

{

    if (heap.size() == 0)

    {

        cout<<"Heap is Empty"<<endl;

        return;

    }

    heap[0] = heap.at(heap.size() - 1);

    heap.pop_back();

    heapifydown(0);

   cout<<"Element Deleted"<<endl;

}

/*

* Extract Minimum Element

*/

int BinaryHeap::ExtractMin()

{

    if (heap.size() == 0)

    {

        return -1;

    }

    else

        return heap.front();

}

/*

* Display Heap

*/

void BinaryHeap::DisplayHeap()

{

    vector <int>::iterator pos = heap.begin();

    cout<<"Heap --> ";

    while (pos != heap.end())

    {

        cout<<*pos<<" ";

        pos++;

    }

    cout<<endl;

}

/*

* Return Left Child

*/

int BinaryHeap::left(int parent)

{

    int l = 2 * parent + 1;

    if (l < heap.size())

        return l;

    else

        return -1;

}

/*

* Return Right Child

*/

int BinaryHeap::right(int parent)

{

    int r = 2 * parent + 2;

    if (r < heap.size())

        return r;

    else

        return -1;

}

/*

* Return Parent

*/

int BinaryHeap::parent(int child)

{

    int p = (child - 1)/2;

    if (child == 0)

        return -1;

    else

        return p;

}

/*

* Heapify- Maintain Heap Structure bottom up

*/

void BinaryHeap::heapifyup(int in)

{

    if (in >= 0 && parent(in) >= 0 && heap[parent(in)] > heap[in])

    {

        int temp = heap[in];

        heap[in] = heap[parent(in)];

        heap[parent(in)] = temp;

        heapifyup(parent(in));

    }

}

/*

* Heapify- Maintain Heap Structure top down

*/

void BinaryHeap::heapifydown(int in)

{

    int child = left(in);

    int child1 = right(in);

    if (child >= 0 && child1 >= 0 && heap[child] > heap[child1])

    {

       child = child1;

    }

    if (child > 0 && heap[in] > heap[child])

    {

        int temp = heap[in];

        heap[in] = heap[child];

        heap[child] = temp;

        heapifydown(child);

    }

}

/*

* Main Contains Menu

*/

int main()

{

    BinaryHeap h;

       

        int n;

        

        cout<<"Enter no of queries"<<endl;

        cin>>n;

    for(i=0;i<n;i++)

    {

        cout<<"------------------"<<endl;

        cout<<"Operations on Heap"<<endl;

        cout<<"------------------"<<endl;

        cout<<"1.Insert Element"<<endl;

        cout<<"2.Delete Minimum Element"<<endl;

        cout<<"3.Extract Minimum Element"<<endl;

        cout<<"4.Print Heap"<<endl;

        cout<<"5.Exit"<<endl;

        int choice, element;

        cout<<"Enter your choice: ";

        cin>>choice;

        switch(choice)

        {

        case 1:

            cout<<"Enter the element to be inserted: ";

            cin>>element;

            h.Insert(element);

            break;

        case 2:

            h.DeleteMin();

            break;

        case 3:

            cout<<"Minimum Element: ";

            if (h.ExtractMin() == -1)

            {

               cout<<"Heap is Empty"<<endl;

            }

                else

                cout<<"Minimum Element: "<<h.ExtractMin()<<endl;

            break;

        case 4:

            cout<<"Displaying elements of Hwap: ";

           h.DisplayHeap();

            break;

        case 5:

            exit(1);

        default:

            cout<<"Enter Correct Choice"<<endl;

        }

    }

    return 0;

}

---------------------------------------------------------------------------------------------------------------------------------------------------------------------

// A C++ program to demonstrate using linked list

#include<iostream>

#include<climits>

using namespace std;

// Prototype of a utility function to swap two integers

void swap(int *x, int *y);

// A class for Min Heap

class MinHeap

{

    int *harr; // pointer to array of elements in heap

    int capacity; // maximum possible size of min heap

    int heap_size; // Current number of elements in min heap

public:

    // Constructor

    MinHeap(int capacity);

    // to heapify a subtree with root at given index

    void MinHeapify(int );

    int parent(int i) { return (i-1)/2; }

    // to get index of left child of node at index i

    int left(int i) { return (2*i + 1); }

    // to get index of right child of node at index i

    int right(int i) { return (2*i + 2); }

    // to extract the root which is the minimum element

    int extractMin();

    // Returns the minimum key (key at root) from min heap

    int getMin() { return harr[0]; }

    // Deletes a key stored at index i

    void deleteKey(int i);

    // Inserts a new key 'k'

    void insertKey(int k);

};

// Constructor: Builds a heap from a given array a[] of given size

MinHeap::MinHeap(int cap)

{

    heap_size = 0;

    capacity = cap;

    harr = new int[cap];

}

// Inserts a new key 'k'

void MinHeap::insertKey(int k)

{

    if (heap_size == capacity)

    {

        cout << " Overflow: Could not insertKey ";

        return;

    }

    // First insert the new key at the end

    heap_size++;

    int i = heap_size - 1;

    harr[i] = k;

    // Fix the min heap property if it is violated

    while (i != 0 && harr[parent(i)] > harr[i])

    {

       swap(&harr[i], &harr[parent(i)]);

       i = parent(i);

    }

}

// Method to remove minimum element (or root) from min heap

int MinHeap::extractMin()

{

    if (heap_size <= 0)

        return INT_MAX;

    if (heap_size == 1)

    {

        heap_size--;

        return harr[0];

    }

    // Store the minimum value, and remove it from heap

    int root = harr[0];

    harr[0] = harr[heap_size-1];

    heap_size--;

    MinHeapify(0);

    return root;

}

// This function deletes key at index i calls extractMin()

void MinHeap::deleteKey()

{

    extractMin();

   

}

// A recursive method to heapify a subtree with root at given index

// This method assumes that the subtrees are already heapified

void MinHeap::MinHeapify(int i)

{

    int l = left(i);

    int r = right(i);

    int smallest = i;

    if (l < heap_size && harr[l] < harr[i])

        smallest = l;

    if (r < heap_size && harr[r] < harr[smallest])

        smallest = r;

    if (smallest != i)

    {

        swap(&harr[i], &harr[smallest]);

        MinHeapify(smallest);

    }

}

// A utility function to swap two elements

void swap(int *x, int *y)

{

    int temp = *x;

    *x = *y;

    *y = temp;

}

// Driver program to test above functions

int main()

{

   int n;

        

        cout<<"Enter no of queries"<<endl;

        cin>>n;

       MinHeap h(n);

    for(i=0;i<n;i++)

    {

        cout<<"------------------"<<endl;

        cout<<"Operations on Heap"<<endl;

        cout<<"------------------"<<endl;

        cout<<"1.Insert Element"<<endl;

        cout<<"2.Extract Minimum Element"<<endl;

        cout<<"3.Delete Minimum Element"<<endl;

        cout<<"4.Exit"<<endl;

        int choice, element;

        cout<<"Enter your choice: ";

        cin>>choice;

        switch(choice)

        {

        case 1:

            cout<<"Enter the element to be inserted: ";

            cin>>element;

            h.insertKey(element);

            break;

        case 2:

            h.DeleteKey();

            break;

        case 3:

            cout<<"Minimum Element: ";

            if (h.extractMin() == -1)

            {

               cout<<"Heap is Empty"<<endl;

            }

                else

                cout<<"Minimum Element: "<<h.extractMin()<<endl;

            break;

       

        case 4:

            exit(1);

        default:

            cout<<"Enter Correct Choice"<<endl;

        }

    }

    return 0;

}