please use northwest corner method 5-13. MG Auto, of Example 5.1-1, produces fou
ID: 365362 • Letter: P
Question
please use northwest corner method
5-13. MG Auto, of Example 5.1-1, produces four car models: M1, M2, M3, and M4. The Detroit plant produces models M1, M2, and M4. Models M1 and M2 are also produced in New Orleans. The Los Angeles plant manufactures models M3 and M4. The capacities of the various plants and the demands at the distribution centers are given in Table 5.29. The mileage chart is the same as given in Example 5.1-1, and the transportation rate remains at 8 cents per car mile for all models. Additionally, it is possible to satisfy a percentage of the demand for some models from the supply of others according to the specifications in Table 5.30 (a) Formulate the corresponding transportation model (b) Determine the optimum shipping schedule. (Hint: Add four new destinations corre- demands at the new destinations are determined from the given percentages.) TABLE 5.27 Transportation Cost/Crate for Problem 5-11 sponding to the new combinations [M1, M2], [M3, M4], [M1, M3], and [M2, M4]. The Retailer 2 4 Orchard 1$1 Orchard 2 $2 Orchard 3 $1 $2 $4 $3 $3 $1 S5 $2 $2 $3 TABLE 5.28 Mileage Chart and Supply and Demand for Problem 5-12 Dealer 4 Supply Center 1 100 Center2 Center3 Demand 100 70 90 200 200 60 100 140 65 150 160 35 400 80 200 130 150 140 50 40 150Explanation / Answer
TOTAL no. of supply constraints: 3
TOTAL no. of demand constraints: 2
D1
D2
Supply
S1
80
215
1000
S2
100
108
1500
S3
102
68
1200
Demand
2300
1400
Table-1
D1
D2
Supply
Row Penalty
S1
80
215
1000
135=215-80
S2
100
108
1500
8=108-100
S3
102
68
1200
34=102-68
Demand
2300
1400
Column
Penalty
20
=100-80
40
=108-68
The maximum penalty, 135, occurs in row S1.
The minimum cij in this row is c11 = 80.
The maximum allocation in this cell is 1000.
It satisfy supply of S1 and adjust the demand of D1 from 2300 to 1300 (2300 - 1000 = 1300).
Table-2
D1
D2
Supply
Row Penalty
S1
80(1000)
215
0
--
S2
100
108
1500
8=108-100
S3
102
68
1200
34=102-68
Demand
1300
1400
Column
Penalty
2
=102-100
40
=108-68
The maximum penalty, 40, occurs in column D2.
The minimum cij in this column is c32 = 68.
The maximum allocation in this cell is 1200.
It satisfy supply of S3 and adjust the demand of D2 from 1400 to 200 (1400 - 1200 = 200).
Table-3
D1
D2
Supply
Row Penalty
S1
80(1000)
215
0
--
S2
100
108
1500
8=108-100
S3
102
68(1200)
0
--
Demand
1300
200
Column
Penalty
100
108
The maximum penalty, 108, occurs in column D2.
The minimum cij in this column is c22 = 108.
The maximum allocation in this cell is 200.
It satisfy demand of D2 and adjust the supply of S2 from 1500 to 1300 (1500 - 200 = 1300).
Table-4
D1
D2
Supply
Row Penalty
S1
80(1000)
215
0
--
S2
100
108(200)
1300
100
S3
102
68(1200)
0
--
Demand
1300
0
Column
Penalty
100
--
The maximum penalty, 100, occurs in row S2.
The minimum cij in this row is c21 = 100.
The maximum allocation in this cell is 1300.
It satisfies supply of S2 and demand of D1.
Initial feasible solution is
D1
D2
Supply
Row Penalty
S1
80(1000)
215
1000
135 | -- | -- | -- |
S2
100(1300)
108(200)
1500
8 | 8 | 8 | 100 |
S3
102
68(1200)
1200
34 | 34 | -- | -- |
Demand
2300
1400
Column
Penalty
20
2
100
100
40
40
108
--
The minimum total transportation cost =80×1000+100×1300+108×200+68×1200=313200
Here, the number of allocated cells = 4 is equal to m + n - 1 = 3 + 2 - 1 = 4
This solution is non-degenerate
Optimality test using modi method...
Allocation Table is
D1
D2
Supply
S1
80 (1000)
215
1000
S2
100 (1300)
108 (200)
1500
S3
102
68 (1200)
1200
Demand
2300
1400
Iteration-1 of optimality test
1. Find ui and vj for all occupied cells(i,j), where cij=ui+vj
1. Substituting, u2=0, we get
2.c21=u2+v1v1=c21-u2v1=100-0v1=100
3.c11=u1+v1u1=c11-v1u1=80-100u1=-20
4.c22=u2+v2v2=c22-u2v2=108-0v2=108
5.c32=u3+v2u3=c32-v2u3=68-108u3=-40
D1
D2
Supply
ui
S1
80 (1000) 3.u1=?,v1=100
c11=u1+v1
u1=c11-v1
u1=80-100
u1=-20
215
1000
u1=-20 3.u1=?,v1=100
c11=u1+v1
u1=c11-v1
u1=80-100
u1=-20
S2
100 (1300) 2.v1=?,u2=0
c21=u2+v1
v1=c21-u2
v1=100-0
v1=100
108 (200) 4.v2=?,u2=0
c22=u2+v2
v2=c22-u2
v2=108-0
v2=108
1500
u2=0 1.u2=0
2.v1=?,4.v2=?,
S3
102
68 (1200) 5.u3=?,v2=108
c32=u3+v2
u3=c32-v2
u3=68-108
u3=-40
1200
u3=-40 5.u3=?,v2=108
c32=u3+v2
u3=c32-v2
u3=68-108
u3=-40
Demand
2300
1400
vj
v1=100 2.v1=?,u2=0
c21=u2+v1
v1=c21-u2
v1=100-0
v1=100
3.u1=?,
v2=108 4.v2=?,u2=0
c22=u2+v2
v2=c22-u2
v2=108-0
v2=108
5.u3=?,
2. Find dij for all unoccupied cells(i,j), where dij=cij-(ui+vj)
1.d12=c12-(u1+v2)=215-(-20+108)=127
2.d31=c31-(u3+v1)=102-(-40+100)=42
D1
D2
Supply
Ui
S1
80 (1000)
215 [127] 1.d12=c12-(u1+v2)=215-(-20+108)=127
1000
u1=-20
S2
100 (1300)
108 (200)
1500
u2=0
S3
102 [42] 2.d31=c31-(u3+v1)=102-(-40+100)=42
68 (1200)
1200
u3=-40
Demand
2300
1400
vj
v1=100
v2=108
Since all dij0.
So final optimal solution is arrived.
D1
D2
Supply
S1
80 (1000)
215
1000
S2
100 (1300)
108 (200)
1500
S3
102
68 (1200)
1200
Demand
2300
1400
The minimum total transportation cost =80×1000+100×1300+108×200+68×1200=313200
B) From the 2nd table using the percentage of the demand the final demand would be:
Denver 700 500 500 600
Miami 600 500 200 100
Denver 70 50 100 120
Miami 60 25 20 5
Total demand of Denver is 340
Total demand of Miami is 110
D1
D2
Supply
S1
80
215
1000
S2
100
108
1500
S3
102
68
1200
Demand
340
110
Solution:
TOTAL no. of supply constraints : 3
TOTAL no. of demand constraints : 2
Problem Table is
`D_1`
`D_2`
Supply
`S_1`
80
215
1000
`S_2`
100
108
1500
`S_3`
102
68
1200
Demand
340
110
Here Total Demand = 450 is less than Total Supply = 3700. So We add a dummy demand constraint with 0 unit cost and with allocation 3250.
Now, The modified table is
`D_1`
`D_2`
`D_(dummy)`
Supply
`S_1`
80
215
0
1000
`S_2`
100
108
0
1500
`S_3`
102
68
0
1200
Demand
340
110
3250
Table-1
`D_1`
`D_2`
`D_(dummy)`
Supply
Row Penalty
`S_1`
80
215
0
1000
`80=80-0`
`S_2`
100
108
0
1500
`100=100-0`
`S_3`
102
68
0
1200
`68=68-0`
Demand
340
110
3250
Column
Penalty
`20`
`=100-80`
`40`
`=108-68`
`0`
`=0-0`
The maximum penalty, 100, occurs in row `S_2`.
The minimum `c_(ij)` in this row is `c_23` = 0.
The maximum allocation in this cell is 1500.
It satisfy supply of `S_2` and adjust the demand of `D_(dummy)` from 3250 to 1750 (3250 - 1500 = 1750).
Table-2
`D_1`
`D_2`
`D_(dummy)`
Supply
Row Penalty
`S_1`
80
215
0
1000
`80=80-0`
`S_2`
100
108
0(1500)
0
--
`S_3`
102
68
0
1200
`68=68-0`
Demand
340
110
1750
Column
Penalty
`22`
`=102-80`
`147`
`=215-68`
`0`
`=0-0`
The maximum penalty, 147, occurs in column `D_2`.
The minimum `c_(ij)` in this column is `c_32` = 68.
The maximum allocation in this cell is 110.
It satisfy demand of `D_2` and adjust the supply of `S_3` from 1200 to 1090 (1200 - 110 = 1090).
Table-3
`D_1`
`D_2`
`D_(dummy)`
Supply
Row Penalty
`S_1`
80
215
0
1000
`80=80-0`
`S_2`
100
108
0(1500)
0
--
`S_3`
102
68(110)
0
1090
`102=102-0`
Demand
340
0
1750
Column
Penalty
`22`
`=102-80`
--
`0`
`=0-0`
The maximum penalty, 102, occurs in row `S_3`.
The minimum `c_(ij)` in this row is `c_33` = 0.
The maximum allocation in this cell is 1090.
It satisfy supply of `S_3` and adjust the demand of `D_(dummy)` from 1750 to 660 (1750 - 1090 = 660).
Table-4
`D_1`
`D_2`
`D_(dummy)`
Supply
Row Penalty
`S_1`
80
215
0
1000
`80=80-0`
`S_2`
100
108
0(1500)
0
--
`S_3`
102
68(110)
0(1090)
0
--
Demand
340
0
660
Column
Penalty
`80`
--
`0`
The maximum penalty, 80, occurs in row `S_1`.
The minimum `c_(ij)` in this row is `c_13` = 0.
The maximum allocation in this cell is 660.
It satisfy demand of `D_(dummy)` and adjust the supply of `S_1` from 1000 to 340 (1000 - 660 = 340).
Table-5
`D_1`
`D_2`
`D_(dummy)`
Supply
Row Penalty
`S_1`
80
215
0(660)
340
`80`
`S_2`
100
108
0(1500)
0
--
`S_3`
102
68(110)
0(1090)
0
--
Demand
340
0
0
Column
Penalty
`80`
--
--
The maximum penalty, 80, occurs in row `S_1`.
The minimum `c_(ij)` in this row is `c_11` = 80.
The maximum allocation in this cell is 340.
It satisfy supply of `S_1` and demand of `D_1`.
Initial feasible solution is
`D_1`
`D_2`
`D_(dummy)`
Supply
Row Penalty
`S_1`
80(340)
215
0(660)
1000
80 | 80 | 80 | 80 | 80 |
`S_2`
100
108
0(1500)
1500
100 | -- | -- | -- | -- |
`S_3`
102
68(110)
0(1090)
1200
68 | 68 | 102 | -- | -- |
Demand
340
110
3250
Column
Penalty
20
22
22
80
80
40
147
--
--
--
0
0
0
0
--
The minimum total transportation cost `= 80 xx 340 + 0 xx 660 + 0 xx 1500 + 68 xx 110 + 0 xx 1090 = 34680`
Here, the number of allocated cells = 5 is equal to m + n - 1 = 3 + 3 - 1 = 5
`:.` This solution is non-degenerate
Optimality test using modi method...
Allocation Table is
`D_1`
`D_2`
`D_(dummy)`
Supply
`S_1`
80 (340)
215
0 (660)
1000
`S_2`
100
108
0 (1500)
1500
`S_3`
102
68 (110)
0 (1090)
1200
Demand
340
110
3250
Iteration-1 of optimality test
1. Find `u_i` and `v_j` for all occupied cells(i,j), where `c_(ij) = u_i + v_j`
`1.` Substituting, `v_3 = 0`, we get
`2. c_13 = u_1 + v_3=>u_1 = c_13 - v_3=>u_1 = 0 -0=>u_1 = 0`
`3. c_11 = u_1 + v_1=>v_1 = c_11 - u_1=>v_1 = 80 -0=>v_1 = 80`
`4. c_23 = u_2 + v_3=>u_2 = c_23 - v_3=>u_2 = 0 -0=>u_2 = 0`
`5. c_33 = u_3 + v_3=>u_3 = c_33 - v_3=>u_3 = 0 -0=>u_3 = 0`
`6. c_32 = u_3 + v_2=>v_2 = c_32 - u_3=>v_2 = 68 -0=>v_2 = 68`
`D_1`
`D_2`
`D_(dummy)`
Supply
`u_i`
`S_1`
80 (340) `3. v_1=?,u_1=0`
`c_11 = u_1 + v_1`
`=>v_1 = c_11 - u_1`
`=>v_1 = 80 -0`
`=>v_1 = 80`
215
0 (660) `2. u_1=?,v_3=0`
`c_13 = u_1 + v_3`
`=>u_1 = c_13 - v_3`
`=>u_1 = 0 -0`
`=>u_1 = 0`
1000
`u_1=0` `2. u_1=?,v_3=0`
`c_13 = u_1 + v_3`
`=>u_1 = c_13 - v_3`
`=>u_1 = 0 -0`
`=>u_1 = 0`
`3. v_1=?`,
`S_2`
100
108
0 (1500) `4. u_2=?,v_3=0`
`c_23 = u_2 + v_3`
`=>u_2 = c_23 - v_3`
`=>u_2 = 0 -0`
`=>u_2 = 0`
1500
`u_2=0` `4. u_2=?,v_3=0`
`c_23 = u_2 + v_3`
`=>u_2 = c_23 - v_3`
`=>u_2 = 0 -0`
`=>u_2 = 0`
`S_3`
102
68 (110) `6. v_2=?,u_3=0`
`c_32 = u_3 + v_2`
`=>v_2 = c_32 - u_3`
`=>v_2 = 68 -0`
`=>v_2 = 68`
0 (1090) `5. u_3=?,v_3=0`
`c_33 = u_3 + v_3`
`=>u_3 = c_33 - v_3`
`=>u_3 = 0 -0`
`=>u_3 = 0`
1200
`u_3=0` `5. u_3=?,v_3=0`
`c_33 = u_3 + v_3`
`=>u_3 = c_33 - v_3`
`=>u_3 = 0 -0`
`=>u_3 = 0`
`6. v_2=?`,
Demand
340
110
3250
`v_j`
`v_1=80` `3. v_1=?,u_1=0`
`c_11 = u_1 + v_1`
`=>v_1 = c_11 - u_1`
`=>v_1 = 80 -0`
`=>v_1 = 80`
`v_2=68` `6. v_2=?,u_3=0`
`c_32 = u_3 + v_2`
`=>v_2 = c_32 - u_3`
`=>v_2 = 68 -0`
`=>v_2 = 68`
`v_3=0` `1. v_3 = 0`
`2. u_1=?`,`4. u_2=?`,`5. u_3=?`,
2. Find `d_(ij)` for all unoccupied cells(i,j), where `d_(ij) = c_(ij) - (u_i + v_j)`
1. d_12 = c_12 - (u_1 + v_2) = 215 - (0 +68) = 147
2. d_21 = c_21 - (u_2 + v_1) = 100 - (0 +80) = 20
3. d_22 = c_22 - (u_2 + v_2) = 108 - (0 +68) = 40
4. d_31 = c_31 - (u_3 + v_1) = 102 - (0 +80) = 22
`D_1`
`D_2`
`D_(dummy)`
Supply
`u_i`
`S_1`
80 (340)
215 [147] `1. d_12 = c_12 - (u_1 + v_2) = 215 - (0 +68) = 147 `
0 (660)
1000
`u_1=0`
`S_2`
100 [20] `2. d_21 = c_21 - (u_2 + v_1) = 100 - (0 +80) = 20 `
108 [40] `3. d_22 = c_22 - (u_2 + v_2) = 108 - (0 +68) = 40 `
0 (1500)
1500
`u_2=0`
`S_3`
102 [22] `4. d_31 = c_31 - (u_3 + v_1) = 102 - (0 +80) = 22 `
68 (110)
0 (1090)
1200
`u_3=0`
Demand
340
110
3250
`v_j`
`v_1=80`
`v_2=68`
`v_3=0`
Since all `d_(ij)>=0`.
So final optimal solution is arrived
`D_1`
`D_2`
`D_(dummy)`
Supply
`S_1`
80 (340)
215
0 (660)
1000
`S_2`
100
108
0 (1500)
1500
`S_3`
102
68 (110)
0 (1090)
1200
Demand
340
110
3250
The minimum total transportation cost `= 80 xx 340 + 0 xx 660 + 0 xx 1500 + 68 xx 110 + 0 xx 1090 = 34680`
D1
D2
Supply
S1
80
215
1000
S2
100
108
1500
S3
102
68
1200
Demand
2300
1400
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.