Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Identify the unit count for each portion of the code given below to identify the

ID: 3665708 • Letter: I

Question

Identify the unit count for each portion of the code given below to identify the overall Big Oh speed. Use the example below as a template for your answer, or some classes may use summations. The table answers below are NOT correct!! But the overall setup is. Partial credit will be given if some portion of the work shown is correct.

Code

Cost

# of Times

Total

int sum1(int N)           

{

     int s = 0;

     for(int i = 1; i <= N; i++)

     {

           s = s + i;

     }

    

     return s;

}

-

-

1

1

1

-

-

1

1

1

1 (int i) + 1 (<=) + 1 (++)

1 + 2(n + 1)

2n + 3

-

-

2

n

2n

-

-

-

-

1

1

1

-

-

Final

4n + 6

O(n)

FOR THE CODE BELOW

sum = 0;

for( i = 0; i < n; i += 2 )

for( j = 0; j < n; j++ )

++sum;

Code

Cost

# of Times

Total

int sum1(int N)           

{

     int s = 0;

     for(int i = 1; i <= N; i++)

     {

           s = s + i;

     }

    

     return s;

}

-

-

1

1

1

-

-

1

1

1

1 (int i) + 1 (<=) + 1 (++)

1 + 2(n + 1)

2n + 3

-

-

2

n

2n

-

-

-

-

1

1

1

-

-

Final

4n + 6

O(n)

Explanation / Answer

portion of the work shown is correct.

Code

Cost

# of Times

Total

sum = 0;

for( i = 0; i < n; i += 2 )

for( j = 0; j < n; j++ )

++sum;

-

-

-

-

-

-

1

1

1 (int i) + 1 (<=) + 1 (+=2)

1+2(n/2 + 1)

n+3

1 (int i) + 1 (<=) + 1 (++)

(n/2)*(1+2(n + 1)

n2+3n/2

1

n2/2

-

-

-

-

-

-

-

Final

3n2/2+5n/2 + 4

O(n2)

Code

Cost

# of Times

Total

sum = 0;

for( i = 0; i < n; i += 2 )

for( j = 0; j < n; j++ )

++sum;

-

-

-

- -

-

-

-

- -

1

1

1

1 (int i) + 1 (<=) + 1 (+=2)

1+2(n/2 + 1)

n+3

1 (int i) + 1 (<=) + 1 (++)

(n/2)*(1+2(n + 1)

n2+3n/2

1

n2/2

n2/2

-

-

-

-

-

-

-

Final

3n2/2+5n/2 + 4

O(n2)

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote