Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The cosine of an angle can be computed from the following infinite series: cosx?

ID: 3673081 • Letter: T

Question

The cosine of an angle can be computed from the following infinite series:

cosx?1?x2 ?x4 ?x6 ?........ 2! 4! 6!

Write a program that reads an angle x (in radians) from the keyboard. Then, in a function compute the cosine of the angle using first five terms of the series. Print the value computed along with the value of the cosine computed using the C++ library function.

3. The cosine of an angle can be computed from the following infinite series: cos x = 1--+ +. Q'.. Write a program that reads an angle x (in radians) from the keyboard. Then, in a function compute the cosine of the angle using first five terms of the series. Print the value computed along with the value of the cosine computed using the C++ library function.

Explanation / Answer

main.cpp

#include<iostream>

#include<cmath>

using namespace std;

double cosine(double angle);

    long factorial(long n);

    int main()

    {

        double angle;

        cout << "Enter the angle in radians: ";

        cin >> angle;

        cout << "The calculated cosine of " << angle << " is " << cosine(angle) << endl;

        cout << "The C++ cosine of " << angle << " is " << cos(angle) << endl;

        system("PAUSE");

        return 0;

    }

    double cosine(double angle)

    {

        double x=0;

        double i;

        for (i=2; i<=8; i+=2)

        {

            if (i==4 || i==8)

            {

             x = x + pow(angle, i)/factorial(i);

            }

            else

            {

             x = x - pow(angle, i)/factorial(i);

            }

        }

        return 1+x;

    }

    long factorial(long n)

    {

        if (n <= 1)

        {

            return 1;

        }

        else

        {

        return (n * factorial(n-1));

        }

    }

Output :

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote