Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

JAVA: Add to RedBlackBST class a method height() that computes the height of the

ID: 3679289 • Letter: J

Question

  JAVA: Add to RedBlackBST class a method height() that computes the height of the tree (notice  the height includes red and black edges and the height of a tree is the maximum depth of any node  in the tree). Develop a recursive method which takes O(n), where n is the number of keys in the  tree and space proportional to the height. You need to argue both the correctness of your method  and its time complexity. Write a client that inserts the integer keys from 1 to 15 -in any order-  and use your new method to print the height of the tree.  ***************this is the Class********************  public class RedBlackBST, Value> {      private static final boolean RED   = true;     private static final boolean BLACK = false;      private Node root;     // root of the BST      // BST helper node data type     private class Node {         private Key key;           // key         private Value val;         // associated data         private Node left, right;  // links to left and right subtrees         private boolean color;     // color of parent link         private int N;             // subtree count          public Node(Key key, Value val, boolean color, int N) {             this.key = key;             this.val = val;             this.color = color;             this.N = N;         }     }      /**      * Initializes an empty symbol table.      */     public RedBlackBST() {     }     /***************************************************************************     *  Node helper methods.     ***************************************************************************/     // is node x red; false if x is null ?     private boolean isRed(Node x) {         if (x == null) return false;         return x.color == RED;     }      // number of node in subtree rooted at x; 0 if x is null     private int size(Node x) {         if (x == null) return 0;         return x.N;     }        /**      * Returns the number of key-value pairs in this symbol table.      * @return the number of key-value pairs in this symbol table      */     public int size() {         return size(root);     }     /**      * Is this symbol table empty?      * @return true if this symbol table is empty and false otherwise      */     public boolean isEmpty() {         return root == null;     }      /***************************************************************************     *  Standard BST search.     ***************************************************************************/      /**      * Returns the value associated with the given key.      * @param key the key      * @return the value associated with the given key if the key is in the symbol table      *     and null if the key is not in the symbol table      * @throws NullPointerException if key is null      */     public Value get(Key key) {         if (key == null) throw new NullPointerException("argument to get() is null");         return get(root, key);     }      // value associated with the given key in subtree rooted at x; null if no such key     private Value get(Node x, Key key) {         while (x != null) {             int cmp = key.compareTo(x.key);             if      (cmp < 0) x = x.left;             else if (cmp > 0) x = x.right;             else              return x.val;         }         return null;     }      /**      * Does this symbol table contain the given key?      * @param key the key      * @return true if this symbol table contains key and      *     false otherwise      * @throws NullPointerException if key is null      */     public boolean contains(Key key) {         return get(key) != null;     }     /***************************************************************************     *  Red-black tree insertion.     ***************************************************************************/      /**      * Inserts the specified key-value pair into the symbol table, overwriting the old       * value with the new value if the symbol table already contains the specified key.      * Deletes the specified key (and its associated value) from this symbol table      * if the specified value is null.      *      * @param key the key      * @param val the value      * @throws NullPointerException if key is null      */     public void put(Key key, Value val) {         if (key == null) throw new NullPointerException("first argument to put() is null");         if (val == null) {             delete(key);             return;         }          root = put(root, key, val);         root.color = BLACK;         // assert check();     }      // insert the key-value pair in the subtree rooted at h     private Node put(Node h, Key key, Value val) {          if (h == null) return new Node(key, val, RED, 1);          int cmp = key.compareTo(h.key);         if      (cmp < 0) h.left  = put(h.left,  key, val);          else if (cmp > 0) h.right = put(h.right, key, val);          else              h.val   = val;          // fix-up any right-leaning links         if (isRed(h.right) && !isRed(h.left))      h = rotateLeft(h);         if (isRed(h.left)  &&  isRed(h.left.left)) h = rotateRight(h);         if (isRed(h.left)  &&  isRed(h.right))     flipColors(h);         h.N = size(h.left) + size(h.right) + 1;          return h;     }     /***************************************************************************     *  Red-black tree deletion.     ***************************************************************************/      /**      * Removes the smallest key and associated value from the symbol table.      * @throws NoSuchElementException if the symbol table is empty      */     public void deleteMin() {         if (isEmpty()) throw new NoSuchElementException("BST underflow");          // if both children of root are black, set root to red         if (!isRed(root.left) && !isRed(root.right))             root.color = RED;          root = deleteMin(root);         if (!isEmpty()) root.color = BLACK;         // assert check();     }      // delete the key-value pair with the minimum key rooted at h     private Node deleteMin(Node h) {          if (h.left == null)             return null;          if (!isRed(h.left) && !isRed(h.left.left))             h = moveRedLeft(h);          h.left = deleteMin(h.left);         return balance(h);     }       /**      * Removes the largest key and associated value from the symbol table.      * @throws NoSuchElementException if the symbol table is empty      */     public void deleteMax() {         if (isEmpty()) throw new NoSuchElementException("BST underflow");          // if both children of root are black, set root to red         if (!isRed(root.left) && !isRed(root.right))             root.color = RED;          root = deleteMax(root);         if (!isEmpty()) root.color = BLACK;         // assert check();     }      // delete the key-value pair with the maximum key rooted at h     private Node deleteMax(Node h) {          if (isRed(h.left))             h = rotateRight(h);          if (h.right == null)             return null;          if (!isRed(h.right) && !isRed(h.right.left))             h = moveRedRight(h);          h.right = deleteMax(h.right);          return balance(h);     }      /**      * Removes the specified key and its associated value from this symbol table           * (if the key is in this symbol table).          *      * @param  key the key      * @throws NullPointerException if key is null      */     public void delete(Key key) {          if (key == null) throw new NullPointerException("argument to delete() is null");         if (!contains(key)) return;          // if both children of root are black, set root to red         if (!isRed(root.left) && !isRed(root.right))             root.color = RED;          root = delete(root, key);         if (!isEmpty()) root.color = BLACK;         // assert check();     }      // delete the key-value pair with the given key rooted at h     private Node delete(Node h, Key key) {          // assert get(h, key) != null;          if (key.compareTo(h.key) < 0)  {             if (!isRed(h.left) && !isRed(h.left.left))                 h = moveRedLeft(h);             h.left = delete(h.left, key);         }         else {             if (isRed(h.left))                 h = rotateRight(h);             if (key.compareTo(h.key) == 0 && (h.right == null))                 return null;             if (!isRed(h.right) && !isRed(h.right.left))                 h = moveRedRight(h);             if (key.compareTo(h.key) == 0) {                 Node x = min(h.right);                 h.key = x.key;                 h.val = x.val;                 // h.val = get(h.right, min(h.right).key);                 // h.key = min(h.right).key;                 h.right = deleteMin(h.right);             }             else h.right = delete(h.right, key);         }         return balance(h);     }     /***************************************************************************     *  Red-black tree helper functions.     ***************************************************************************/      // make a left-leaning link lean to the right     private Node rotateRight(Node h) {         // assert (h != null) && isRed(h.left);         Node x = h.left;         h.left = x.right;         x.right = h;         x.color = x.right.color;         x.right.color = RED;         x.N = h.N;         h.N = size(h.left) + size(h.right) + 1;         return x;     }      // make a right-leaning link lean to the left     private Node rotateLeft(Node h) {         // assert (h != null) && isRed(h.right);         Node x = h.right;         h.right = x.left;         x.left = h;         x.color = x.left.color;         x.left.color = RED;         x.N = h.N;         h.N = size(h.left) + size(h.right) + 1;         return x;     }      // flip the colors of a node and its two children     private void flipColors(Node h) {         // h must have opposite color of its two children         // assert (h != null) && (h.left != null) && (h.right != null);         // assert (!isRed(h) &&  isRed(h.left) &&  isRed(h.right))         //    || (isRed(h)  && !isRed(h.left) && !isRed(h.right));         h.color = !h.color;         h.left.color = !h.left.color;         h.right.color = !h.right.color;     }      // Assuming that h is red and both h.left and h.left.left     // are black, make h.left or one of its children red.     private Node moveRedLeft(Node h) {         // assert (h != null);         // assert isRed(h) && !isRed(h.left) && !isRed(h.left.left);          flipColors(h);         if (isRed(h.right.left)) {              h.right = rotateRight(h.right);             h = rotateLeft(h);             flipColors(h);         }         return h;     }      // Assuming that h is red and both h.right and h.right.left     // are black, make h.right or one of its children red.     private Node moveRedRight(Node h) {         // assert (h != null);         // assert isRed(h) && !isRed(h.right) && !isRed(h.right.left);         flipColors(h);         if (isRed(h.left.left)) {              h = rotateRight(h);             flipColors(h);         }         return h;     }      // restore red-black tree invariant     private Node balance(Node h) {         // assert (h != null);          if (isRed(h.right))                      h = rotateLeft(h);         if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);         if (isRed(h.left) && isRed(h.right))     flipColors(h);          h.N = size(h.left) + size(h.right) + 1;         return h;     }      /***************************************************************************     *  Utility functions.     ***************************************************************************/      /**      * Returns the height of the BST (for debugging).      * @return the height of the BST (a 1-node tree has height 0)      */     public int height() {         return height(root);     }     private int height(Node x) {         if (x == null) return -1;         return 1 + Math.max(height(x.left), height(x.right));     }     /***************************************************************************     *  Ordered symbol table methods.     ***************************************************************************/      /**      * Returns the smallest key in the symbol table.      * @return the smallest key in the symbol table      * @throws NoSuchElementException if the symbol table is empty      */     public Key min() {         if (isEmpty()) throw new NoSuchElementException("called min() with empty symbol table");         return min(root).key;     }       // the smallest key in subtree rooted at x; null if no such key     private Node min(Node x) {          // assert x != null;         if (x.left == null) return x;          else                return min(x.left);      }       /**      * Returns the largest key in the symbol table.      * @return the largest key in the symbol table      * @throws NoSuchElementException if the symbol table is empty      */     public Key max() {         if (isEmpty()) throw new NoSuchElementException("called max() with empty symbol table");         return max(root).key;     }       // the largest key in the subtree rooted at x; null if no such key     private Node max(Node x) {          // assert x != null;         if (x.right == null) return x;          else                 return max(x.right);      }        /**      * Returns the largest key in the symbol table less than or equal to key.      * @param key the key      * @return the largest key in the symbol table less than or equal to key      * @throws NoSuchElementException if there is no such key      * @throws NullPointerException if key is null      */     public Key floor(Key key) {         if (key == null) throw new NullPointerException("argument to floor() is null");         if (isEmpty()) throw new NoSuchElementException("called floor() with empty symbol table");         Node x = floor(root, key);         if (x == null) return null;         else           return x.key;     }          // the largest key in the subtree rooted at x less than or equal to the given key     private Node floor(Node x, Key key) {         if (x == null) return null;         int cmp = key.compareTo(x.key);         if (cmp == 0) return x;         if (cmp < 0)  return floor(x.left, key);         Node t = floor(x.right, key);         if (t != null) return t;          else           return x;     }      /**      * Returns the smallest key in the symbol table greater than or equal to key.      * @param key the key      * @return the smallest key in the symbol table greater than or equal to key      * @throws NoSuchElementException if there is no such key      * @throws NullPointerException if key is null      */     public Key ceiling(Key key) {         if (key == null) throw new NullPointerException("argument to ceiling() is null");         if (isEmpty()) throw new NoSuchElementException("called ceiling() with empty symbol table");         Node x = ceiling(root, key);         if (x == null) return null;         else           return x.key;       }      // the smallest key in the subtree rooted at x greater than or equal to the given key     private Node ceiling(Node x, Key key) {           if (x == null) return null;         int cmp = key.compareTo(x.key);         if (cmp == 0) return x;         if (cmp > 0)  return ceiling(x.right, key);         Node t = ceiling(x.left, key);         if (t != null) return t;          else           return x;     }      /**      * Return the kth smallest key in the symbol table.      * @param k the order statistic      * @return the kth smallest key in the symbol table      * @throws IllegalArgumentException unless k is between 0 and      *     N  1      */     public Key select(int k) {         if (k < 0 || k >= size()) throw new IllegalArgumentException();         Node x = select(root, k);         return x.key;     }      // the key of rank k in the subtree rooted at x     private Node select(Node x, int k) {         // assert x != null;         // assert k >= 0 && k < size(x);         int t = size(x.left);          if      (t > k) return select(x.left,  k);          else if (t < k) return select(x.right, k-t-1);          else            return x;      }       /**      * Return the number of keys in the symbol table strictly less than key.      * @param key the key      * @return the number of keys in the symbol table strictly less than key      * @throws NullPointerException if key is null      */     public int rank(Key key) {         if (key == null) throw new NullPointerException("argument to rank() is null");         return rank(key, root);     }       // number of keys less than key in the subtree rooted at x     private int rank(Key key, Node x) {         if (x == null) return 0;          int cmp = key.compareTo(x.key);          if      (cmp < 0) return rank(key, x.left);          else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);          else              return size(x.left);      }      /***************************************************************************     *  Range count and range search.     ***************************************************************************/      /**      * Returns all keys in the symbol table as an Iterable.      * To iterate over all of the keys in the symbol table named st,      * use the foreach notation: for (Key key : st.keys()).      * @return all keys in the sybol table as an Iterable      */     public Iterable keys() {         if (isEmpty()) return new Queue();         return keys(min(), max());     }      /**      * Returns all keys in the symbol table in the given range,      * as an Iterable.      * @return all keys in the sybol table between lo       *    (inclusive) and hi (exclusive) as an Iterable      * @throws NullPointerException if either lo or hi      *    is null      */     public Iterable keys(Key lo, Key hi) {         if (lo == null) throw new NullPointerException("first argument to keys() is null");         if (hi == null) throw new NullPointerException("second argument to keys() is null");          Queue queue = new Queue();         // if (isEmpty() || lo.compareTo(hi) > 0) return queue;         keys(root, queue, lo, hi);         return queue;     }       // add the keys between lo and hi in the subtree rooted at x     // to the queue     private void keys(Node x, Queue queue, Key lo, Key hi) {          if (x == null) return;          int cmplo = lo.compareTo(x.key);          int cmphi = hi.compareTo(x.key);          if (cmplo < 0) keys(x.left, queue, lo, hi);          if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);          if (cmphi > 0) keys(x.right, queue, lo, hi);      }       /**      * Returns the number of keys in the symbol table in the given range.      * @return the number of keys in the sybol table between lo       *    (inclusive) and hi (exclusive)      * @throws NullPointerException if either lo or hi      *    is null      */     public int size(Key lo, Key hi) {         if (lo == null) throw new NullPointerException("first argument to size() is null");         if (hi == null) throw new NullPointerException("second argument to size() is null");          if (lo.compareTo(hi) > 0) return 0;         if (contains(hi)) return rank(hi) - rank(lo) + 1;         else              return rank(hi) - rank(lo);     }      /***************************************************************************     *  Check integrity of red-black tree data structure.     ***************************************************************************/     private boolean check() {         if (!isBST())            StdOut.println("Not in symmetric order");         if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");         if (!isRankConsistent()) StdOut.println("Ranks not consistent");         if (!is23())             StdOut.println("Not a 2-3 tree");         if (!isBalanced())       StdOut.println("Not balanced");         return isBST() && isSizeConsistent() && isRankConsistent() && is23() && isBalanced();     }      // does this binary tree satisfy symmetric order?     // Note: this test also ensures that data structure is a binary tree since order is strict     private boolean isBST() {         return isBST(root, null, null);     }      // is the tree rooted at x a BST with all keys strictly between min and max     // (if min or max is null, treat as empty constraint)     // Credit: Bob Dondero's elegant solution     private boolean isBST(Node x, Key min, Key max) {         if (x == null) return true;         if (min != null && x.key.compareTo(min) <= 0) return false;         if (max != null && x.key.compareTo(max) >= 0) return false;         return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);     }       // are the size fields correct?     private boolean isSizeConsistent() { return isSizeConsistent(root); }     private boolean isSizeConsistent(Node x) {         if (x == null) return true;         if (x.N != size(x.left) + size(x.right) + 1) return false;         return isSizeConsistent(x.left) && isSizeConsistent(x.right);     }       // check that ranks are consistent     private boolean isRankConsistent() {         for (int i = 0; i < size(); i++)             if (i != rank(select(i))) return false;         for (Key key : keys())             if (key.compareTo(select(rank(key))) != 0) return false;         return true;     }      // Does the tree have no red right links, and at most one (left)     // red links in a row on any path?     private boolean is23() { return is23(root); }     private boolean is23(Node x) {         if (x == null) return true;         if (isRed(x.right)) return false;         if (x != root && isRed(x) && isRed(x.left))             return false;         return is23(x.left) && is23(x.right);     }       // do all paths from root to leaf have same number of black edges?     private boolean isBalanced() {          int black = 0;     // number of black links on path from root to min         Node x = root;         while (x != null) {             if (!isRed(x)) black++;             x = x.left;         }         return isBalanced(root, black);     }      // does every path from the root to a leaf have the given number of black links?     private boolean isBalanced(Node x, int black) {         if (x == null) return black == 0;         if (!isRed(x)) black--;         return isBalanced(x.left, black) && isBalanced(x.right, black);     }        /**      * Unit tests the RedBlackBST data type.      */     public static void main(String[] args) {          RedBlackBST st = new RedBlackBST();         for (int i = 0; !StdIn.isEmpty(); i++) {             String key = StdIn.readString();             st.put(key, i);         }         for (String s : st.keys())             StdOut.println(s + " " + st.get(s));         StdOut.println();     } } 

Explanation / Answer

import java.util.NoSuchElementException;

import secondweek.Queue;
import secondweek.StdIn;
import secondweek.StdOut;

public class RedBlackBST<Key, Value> {

private static final boolean RED = true;
private static final boolean BLACK = false;

private Node root; // root of the BST

// BST helper node data type
private class Node {
private Key key; // key
private Value val; // associated data
private Node left, right; // links to left and right subtrees
private boolean color; // color of parent link
private int N; // subtree count

public Node(Key key, Value val, boolean color, int N) {
this.key = key;
this.val = val;
this.color = color;
this.N = N;
}
}

/**
* Initializes an empty symbol table.
*/
public RedBlackBST() {
}

/***************************************************************************
* Node helper methods.
***************************************************************************/
// is node x red; false if x is null ?
private boolean isRed(Node x) {
if (x == null) return false;
return x.color == RED;
}

// number of node in subtree rooted at x; 0 if x is null
private int size(Node x) {
if (x == null) return 0;
return x.N;
}


/**
* Returns the number of key-value pairs in this symbol table.
* @return the number of key-value pairs in this symbol table
*/
public int size() {
return size(root);
}

/**
* Is this symbol table empty?
* @return true if this symbol table is empty and false otherwise
*/
public boolean isEmpty() {
return root == null;
}


/***************************************************************************
* Standard BST search.
***************************************************************************/

/**
* Returns the value associated with the given key.
* @param key the key
* @return the value associated with the given key if the key is in the symbol table
* and null if the key is not in the symbol table
* @throws NullPointerException if key is null
*/
public Value get(Key key) {
if (key == null) throw new NullPointerException("argument to get() is null");
return get(root, key);
}

// value associated with the given key in subtree rooted at x; null if no such key
private Value get(Node x, Key key) {
while (x != null) {
int cmp = key.compareTo(x.key);
if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else return x.val;
}
return null;
}

/**
* Does this symbol table contain the given key?
* @param key the key
* @return true if this symbol table contains key and
* false otherwise
* @throws NullPointerException if key is null
*/
public boolean contains(Key key) {
return get(key) != null;
}

/***************************************************************************
* Red-black tree insertion.
***************************************************************************/

/**
* Inserts the specified key-value pair into the symbol table, overwriting the old
* value with the new value if the symbol table already contains the specified key.
* Deletes the specified key (and its associated value) from this symbol table
* if the specified value is null.
*
* @param key the key
* @param val the value
* @throws NullPointerException if key is null
*/
public void put(Key key, Value val) {
if (key == null) throw new NullPointerException("first argument to put() is null");
if (val == null) {
delete(key);
return;
}

root = put(root, key, val);
root.color = BLACK;
// assert check();
}

// insert the key-value pair in the subtree rooted at h
private Node put(Node h, Key key, Value val) {
if (h == null) return new Node(key, val, RED, 1);

int cmp = key.compareTo(h.key);
if (cmp < 0) h.left = put(h.left, key, val);
else if (cmp > 0) h.right = put(h.right, key, val);
else h.val = val;

// fix-up any right-leaning links
if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
if (isRed(h.left) && isRed(h.right)) flipColors(h);
h.N = size(h.left) + size(h.right) + 1;

return h;
}

/***************************************************************************
* Red-black tree deletion.
***************************************************************************/

/**
* Removes the smallest key and associated value from the symbol table.
* @throws NoSuchElementException if the symbol table is empty
*/
public void deleteMin() {
if (isEmpty()) throw new NoSuchElementException("BST underflow");

// if both children of root are black, set root to red
if (!isRed(root.left) && !isRed(root.right))
root.color = RED;

root = deleteMin(root);
if (!isEmpty()) root.color = BLACK;
// assert check();
}

// delete the key-value pair with the minimum key rooted at h
private Node deleteMin(Node h) {
if (h.left == null)
return null;

if (!isRed(h.left) && !isRed(h.left.left))
h = moveRedLeft(h);

h.left = deleteMin(h.left);
return balance(h);
}


/**
* Removes the largest key and associated value from the symbol table.
* @throws NoSuchElementException if the symbol table is empty
*/
public void deleteMax() {
if (isEmpty()) throw new NoSuchElementException("BST underflow");

// if both children of root are black, set root to red
if (!isRed(root.left) && !isRed(root.right))
root.color = RED;

root = deleteMax(root);
if (!isEmpty()) root.color = BLACK;
// assert check();
}

// delete the key-value pair with the maximum key rooted at h
private Node deleteMax(Node h) {
if (isRed(h.left))
h = rotateRight(h);

if (h.right == null)
return null;

if (!isRed(h.right) && !isRed(h.right.left))
h = moveRedRight(h);

h.right = deleteMax(h.right);

return balance(h);
}

/**
* Removes the specified key and its associated value from this symbol table   
* (if the key is in this symbol table).
*
* @param key the key
* @throws NullPointerException if key is null
*/
public void delete(Key key) {
if (key == null) throw new NullPointerException("argument to delete() is null");
if (!contains(key)) return;

// if both children of root are black, set root to red
if (!isRed(root.left) && !isRed(root.right))
root.color = RED;

root = delete(root, key);
if (!isEmpty()) root.color = BLACK;
// assert check();
}

// delete the key-value pair with the given key rooted at h
private Node delete(Node h, Key key) {
// assert get(h, key) != null;

if (key.compareTo(h.key) < 0) {
if (!isRed(h.left) && !isRed(h.left.left))
h = moveRedLeft(h);
h.left = delete(h.left, key);
}
else {
if (isRed(h.left))
h = rotateRight(h);
if (key.compareTo(h.key) == 0 && (h.right == null))
return null;
if (!isRed(h.right) && !isRed(h.right.left))
h = moveRedRight(h);
if (key.compareTo(h.key) == 0) {
Node x = min(h.right);
h.key = x.key;
h.val = x.val;
// h.val = get(h.right, min(h.right).key);
// h.key = min(h.right).key;
h.right = deleteMin(h.right);
}
else h.right = delete(h.right, key);
}
return balance(h);
}

/***************************************************************************
* Red-black tree helper functions.
***************************************************************************/

// make a left-leaning link lean to the right
private Node rotateRight(Node h) {
// assert (h != null) && isRed(h.left);
Node x = h.left;
h.left = x.right;
x.right = h;
x.color = x.right.color;
x.right.color = RED;
x.N = h.N;
h.N = size(h.left) + size(h.right) + 1;
return x;
}

// make a right-leaning link lean to the left
private Node rotateLeft(Node h) {
// assert (h != null) && isRed(h.right);
Node x = h.right;
h.right = x.left;
x.left = h;
x.color = x.left.color;
x.left.color = RED;
x.N = h.N;
h.N = size(h.left) + size(h.right) + 1;
return x;
}

// flip the colors of a node and its two children
private void flipColors(Node h) {
// h must have opposite color of its two children
// assert (h != null) && (h.left != null) && (h.right != null);
// assert (!isRed(h) && isRed(h.left) && isRed(h.right))
// || (isRed(h) && !isRed(h.left) && !isRed(h.right));
h.color = !h.color;
h.left.color = !h.left.color;
h.right.color = !h.right.color;
}

// Assuming that h is red and both h.left and h.left.left
// are black, make h.left or one of its children red.
private Node moveRedLeft(Node h) {
// assert (h != null);
// assert isRed(h) && !isRed(h.left) && !isRed(h.left.left);

flipColors(h);
if (isRed(h.right.left)) {
h.right = rotateRight(h.right);
h = rotateLeft(h);
flipColors(h);
}
return h;
}

// Assuming that h is red and both h.right and h.right.left
// are black, make h.right or one of its children red.
private Node moveRedRight(Node h) {
// assert (h != null);
// assert isRed(h) && !isRed(h.right) && !isRed(h.right.left);
flipColors(h);
if (isRed(h.left.left)) {
h = rotateRight(h);
flipColors(h);
}
return h;
}

// restore red-black tree invariant
private Node balance(Node h) {
// assert (h != null);

if (isRed(h.right)) h = rotateLeft(h);
if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
if (isRed(h.left) && isRed(h.right)) flipColors(h);

h.N = size(h.left) + size(h.right) + 1;
return h;
}


/***************************************************************************
* Utility functions.
***************************************************************************/

/**
* Returns the height of the BST (for debugging).
* @return the height of the BST (a 1-node tree has height 0)
*/
public int height() {
return height(root);
}
private int height(Node x) {
if (x == null) return 0;
return 1 + Math.max(height(x.left), height(x.right));
}

/***************************************************************************
* Ordered symbol table methods.
***************************************************************************/

/**
* Returns the smallest key in the symbol table.
* @return the smallest key in the symbol table
* @throws NoSuchElementException if the symbol table is empty
*/
public Key min() {
if (isEmpty()) throw new NoSuchElementException("called min() with empty symbol table");
return min(root).key;
}

// the smallest key in subtree rooted at x; null if no such key
private Node min(Node x) {
// assert x != null;
if (x.left == null) return x;
else return min(x.left);
}

/**
* Returns the largest key in the symbol table.
* @return the largest key in the symbol table
* @throws NoSuchElementException if the symbol table is empty
*/
public Key max() {
if (isEmpty()) throw new NoSuchElementException("called max() with empty symbol table");
return max(root).key;
}

// the largest key in the subtree rooted at x; null if no such key
private Node max(Node x) {
// assert x != null;
if (x.right == null) return x;
else return max(x.right);
}


/**
* Returns the largest key in the symbol table less than or equal to key.
* @param key the key
* @return the largest key in the symbol table less than or equal to key
* @throws NoSuchElementException if there is no such key
* @throws NullPointerException if key is null
*/
public Key floor(Key key) {
if (key == null) throw new NullPointerException("argument to floor() is null");
if (isEmpty()) throw new NoSuchElementException("called floor() with empty symbol table");
Node x = floor(root, key);
if (x == null) return null;
else return x.key;
}

// the largest key in the subtree rooted at x less than or equal to the given key
private Node floor(Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp == 0) return x;
if (cmp < 0) return floor(x.left, key);
Node t = floor(x.right, key);
if (t != null) return t;
else return x;
}

/**
* Returns the smallest key in the symbol table greater than or equal to key.
* @param key the key
* @return the smallest key in the symbol table greater than or equal to key
* @throws NoSuchElementException if there is no such key
* @throws NullPointerException if key is null
*/
public Key ceiling(Key key) {
if (key == null) throw new NullPointerException("argument to ceiling() is null");
if (isEmpty()) throw new NoSuchElementException("called ceiling() with empty symbol table");
Node x = ceiling(root, key);
if (x == null) return null;
else return x.key;
}

// the smallest key in the subtree rooted at x greater than or equal to the given key
private Node ceiling(Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo(x.key);
if (cmp == 0) return x;
if (cmp > 0) return ceiling(x.right, key);
Node t = ceiling(x.left, key);
if (t != null) return t;
else return x;
}

/**
* Return the kth smallest key in the symbol table.
* @param k the order statistic
* @return the kth smallest key in the symbol table
* @throws IllegalArgumentException unless k is between 0 and
* N 1
*/
public Key select(int k) {
if (k < 0 || k >= size()) throw new IllegalArgumentException();
Node x = select(root, k);
return x.key;
}

// the key of rank k in the subtree rooted at x
private Node select(Node x, int k) {
// assert x != null;
// assert k >= 0 && k < size(x);
int t = size(x.left);
if (t > k) return select(x.left, k);
else if (t < k) return select(x.right, k-t-1);
else return x;
}

/**
* Return the number of keys in the symbol table strictly less than key.
* @param key the key
* @return the number of keys in the symbol table strictly less than key
* @throws NullPointerException if key is null
*/
public int rank(Key key) {
if (key == null) throw new NullPointerException("argument to rank() is null");
return rank(key, root);
}

// number of keys less than key in the subtree rooted at x
private int rank(Key key, Node x) {
if (x == null) return 0;
int cmp = key.compareTo(x.key);
if (cmp < 0) return rank(key, x.left);
else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
else return size(x.left);
}

/***************************************************************************
* Range count and range search.
***************************************************************************/

/**
* Returns all keys in the symbol table as an Iterable.
* To iterate over all of the keys in the symbol table named st,
* use the foreach notation: for (Key key : st.keys()).
* @return all keys in the sybol table as an Iterable
*/
public Iterable keys() {
if (isEmpty()) return new Queue();
return keys(min(), max());
}

/**
* Returns all keys in the symbol table in the given range,
* as an Iterable.
* @return all keys in the sybol table between lo
* (inclusive) and hi (exclusive) as an Iterable
* @throws NullPointerException if either lo or hi
* is null
*/
public Iterable keys(Key lo, Key hi) {
if (lo == null) throw new NullPointerException("first argument to keys() is null");
if (hi == null) throw new NullPointerException("second argument to keys() is null");

Queue queue = new Queue();
// if (isEmpty() || lo.compareTo(hi) > 0) return queue;
keys(root, queue, lo, hi);
return queue;
}

// add the keys between lo and hi in the subtree rooted at x
// to the queue
private void keys(Node x, Queue queue, Key lo, Key hi) {
if (x == null) return;
int cmplo = lo.compareTo(x.key);
int cmphi = hi.compareTo(x.key);
if (cmplo < 0) keys(x.left, queue, lo, hi);
if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);
if (cmphi > 0) keys(x.right, queue, lo, hi);
}

/**
* Returns the number of keys in the symbol table in the given range.
* @return the number of keys in the sybol table between lo
* (inclusive) and hi (exclusive)
* @throws NullPointerException if either lo or hi
* is null
*/
public int size(Key lo, Key hi) {
if (lo == null) throw new NullPointerException("first argument to size() is null");
if (hi == null) throw new NullPointerException("second argument to size() is null");

if (lo.compareTo(hi) > 0) return 0;
if (contains(hi)) return rank(hi) - rank(lo) + 1;
else return rank(hi) - rank(lo);
}


/***************************************************************************
* Check integrity of red-black tree data structure.
***************************************************************************/
private boolean check() {
if (!isBST()) StdOut.println("Not in symmetric order");
if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");
if (!isRankConsistent()) StdOut.println("Ranks not consistent");
if (!is23()) StdOut.println("Not a 2-3 tree");
if (!isBalanced()) StdOut.println("Not balanced");
return isBST() && isSizeConsistent() && isRankConsistent() && is23() && isBalanced();
}

// does this binary tree satisfy symmetric order?
// Note: this test also ensures that data structure is a binary tree since order is strict
private boolean isBST() {
return isBST(root, null, null);
}

// is the tree rooted at x a BST with all keys strictly between min and max
// (if min or max is null, treat as empty constraint)
// Credit: Bob Dondero's elegant solution
private boolean isBST(Node x, Key min, Key max) {
if (x == null) return true;
if (min != null && x.key.compareTo(min) <= 0) return false;
if (max != null && x.key.compareTo(max) >= 0) return false;
return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
}

// are the size fields correct?
private boolean isSizeConsistent() { return isSizeConsistent(root); }
private boolean isSizeConsistent(Node x) {
if (x == null) return true;
if (x.N != size(x.left) + size(x.right) + 1) return false;
return isSizeConsistent(x.left) && isSizeConsistent(x.right);
}

// check that ranks are consistent
private boolean isRankConsistent() {
for (int i = 0; i < size(); i++)
if (i != rank(select(i))) return false;
for (Key key : keys())
if (key.compareTo(select(rank(key))) != 0) return false;
return true;
}

// Does the tree have no red right links, and at most one (left)
// red links in a row on any path?
private boolean is23() { return is23(root); }
private boolean is23(Node x) {
if (x == null) return true;
if (isRed(x.right)) return false;
if (x != root && isRed(x) && isRed(x.left))
return false;
return is23(x.left) && is23(x.right);
}

// do all paths from root to leaf have same number of black edges?
private boolean isBalanced() {
int black = 0; // number of black links on path from root to min
Node x = root;
while (x != null) {
if (!isRed(x)) black++;
x = x.left;
}
return isBalanced(root, black);
}

// does every path from the root to a leaf have the given number of black links?
private boolean isBalanced(Node x, int black) {
if (x == null) return black == 0;
if (!isRed(x)) black--;
return isBalanced(x.left, black) && isBalanced(x.right, black);
}


/**
* Unit tests the RedBlackBST data type.
*/
public static void main(String[] args) {
RedBlackBST st = new RedBlackBST();
for (int i = 0; !StdIn.isEmpty(); i++) {
String key = StdIn.readString();
st.put(key, i);
}
for (String s : st.keys())
StdOut.println(s + " " + st.get(s));
StdOut.println();
}
}