Say about all these statements if they are true or not or are an open problem. P
ID: 3687119 • Letter: S
Question
Say about all these statements if they are true or not or are an open problem. Prove, or explain precisely your answer.
1. If P = NP then the Halting problem becomes decidable.
2. If NP 6= Co NP then P 6= NP. Hint: think what is the complement of P
3. If we can solve the Hamiltonian path in time O(n 4 ) then you can solve any other NPC problem in O(n 4 ) time.
4. Say that the input contains 3 numbers a, b, c. Say that we have an algorithm for the problem that runs in time O(log2 a) + O( b) + O(log c). Is this algorithm polynomial?
Explanation / Answer
1)
TRUE
Since P = NP means it halts for every input. So on every input we can decide. So Halting problen becomes decidble.
-------------------------------------------------------------------------------------------------------------------------------------------------
2) TRUE
CO means completeness. It is combination of problems solve in polynomial time and non-polynomial time.
so, CO = P + NP ===> P = CO - NP
But given condition is NP != CO - NP .
So thos condition is true since they said not equal.
---------------------------------------------------------------------------------------------------------------------------------------------------
3) FALSE
Hamilton path is done in O(n4) time. So it not intends to say all other NPC solve in same time.
-----------------------------------------------------------------------------------------------------------------------------------------------------
4) Yes it is solve in polynomial time. Since a ,b, c are numbers and defined. So we will have definite solution in polynomial time.
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.