Need help with progam, muct be in C++. Declare an array (using arrayListType.h)
ID: 3690032 • Letter: N
Question
Need help with progam, muct be in C++.
Declare an array (using arrayListType.h) hold from 60 to 70 integers.
Load the array with data from lab8.dat
Sort the array using the Selection sort (which is defined in arrayListType.h) and counting the number of loop iterations and the number of record moves.
Print the sorted array, the number of loop iterations and the number of record moves.
Do the same thing with the Insertion and Quick sorts.
This program uses the data file lab8.dat. Create the output file, YourIslandIDlab8.out, for all of your output.
Note, you must start with the original unsorted array each time.
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
arrayListType.h
#ifndef H_arrayListType
#define H_arrayListType
#include <iostream>
#include <cassert>
using namespace std;
//*****************************************************************************************************************************************************************
//Portions of this code are from http://faculty.njcu.edu/tliu/my_html/CS209/chap9/searchAlgorithms/arrayListType.h modifications were made to adapt it to this lab.
//*****************************************************************************************************************************************************************
template <class elemType>
class arrayListType
{
public:
const arrayListType<elemType>& operator= (const arrayListType<elemType>&);
//Overloads the assignment operator
bool isEmpty();
//Function to determine whether the list is empty
//Postcondition: Returns true if the list is empty;
// otherwise, returns false.
bool isFull();
//Function to determine whether the list is full.
//Postcondition: Returns true if the list is full;
// otherwise, returns false.
int getSize();
//Function to determine the number of elements in the list
//Postcondition: Returns the value of length.
int maxListSize();
//Function to determine the size of the list.
//Postcondition: Returns the value of maxSize.
void print(ofstream &) const;
//Function to output the elements of the list
//Postcondition: Elements of the list are output on the
// standard output device and the Outfile
bool isItemAtEqual(int location, const elemType& item);
//Function to determine whether the item is the same
//as the item in the list at the position specified by
//Postcondition: Returns true if the list[location]
// is the same as the item; otherwise,
// returns false.
void insertAt(int location, const elemType& insertItem);
//Function to insert an item in the list at the
//position specified by location. The item to be inserted
//is passed as a parameter to the function.
//Postcondition: Starting at location, the elements of the
// list are shifted down, list[location] = insertItem;,
// and length++;. If the list is full or location is
// out of range, an appropriate message is displayed.
void insertEnd(const elemType& insertItem);
//Function to insert an item at the end of the list.
//The parameter insertItem specifies the item to be inserted.
//Postcondition: list[length] = insertItem; and length++;
// If the list is full, an appropriate message is
// displayed.
void removeAt(int location);
//Function to remove the item from the list at the
//position specified by location
//Postcondition: The list element at list[location] is removed
// and length is decremented by 1. If location is out of
// range,an appropriate message is displayed.
void retrieveAt(int location, elemType& retItem);
//Function to retrieve the element from the list at the
//position specified by location.
//Postcondition: retItem = list[location]
// If location is out of range, an appropriate message is
// displayed.
void replaceAt(int location, const elemType& repItem);
//Function to replace the elements in the list at the
//position specified by location. The item to be replaced
//is specified by the parameter repItem.
//Postcondition: list[location] = repItem
// If location is out of range, an appropriate message is
// displayed.
void clearList();
//Function to remove all the elements from the list.
//After this operation, the size of the list is zero.
//Postcondition: length = 0;
int seqSearch(const elemType& item);
//Function to search the list for a given item.
//Postcondition: If the item is found, returns the location
// in the array where the item is found; otherwise,
// returns -1.
void insert(const elemType& insertItem);
//Function to insert the item specified by the parameter
//insertItem at the end of the list. However, first the
//list is searched to see whether the item to be inserted
//is already in the list.
//Postcondition: list[length] = insertItem and length++
// If the item is already in the list or the list
// is full, an appropriate message is displayed.
void remove(const elemType& removeItem);
//Function to remove an item from the list. The parameter
//removeItem specifies the item to be removed.
//Postcondition: If removeItem is found in the list,
// it is removed from the list and length is
// decremented by one.
arrayListType(int size = 100);
//constructor
//Creates an array of the size specified by the
//parameter size. The default array size is 100.
//Postcondition: The list points to the array, length = 0,
// and maxSize = size
arrayListType(const arrayListType<elemType>& otherList);
//copy constructor
~arrayListType();
//destructor
//Deallocates the memory occupied by the array.
void selectionSort();
//sort the list using slections sort.
//also counts the # of iterations and number of moves
void insertionSort();
//sort the list using Insertion sort.
//also counts the # of iterations and number of moves
void QuickSort(int first, int last);
//sort the list using quick sort.
//pass first and last elements in
//also counts the # of iterations and number of moves
int getMoves();
//returns the value of moves after a search has been called
//This also resets the value of moves to 0
int getIterations();
//returns the value of iterations after a search has been called
//This also restes the value of iterations to 0
protected:
elemType *list; //array to hold the list elements
int length; //to store the length of the list
int maxSize; //to store the maximum size of the list
int moves; //to store the number of moves or swaps in sortting
int iterations; //to store number of iterations in sortting
void swap(int first, int second);
int minLocation(int first, int last);
int partition(int first, int last);
};
template <class elemType>
bool arrayListType<elemType>::isEmpty()
{
return (length == 0);
}//isEmpty()
template <class elemType>
bool arrayListType<elemType>::isFull()
{
return (length == maxSize);
}//isFull()
template <class elemType>
int arrayListType<elemType>::getSize()
{
return length;
}//sizeOfList()
template <class elemType>
int arrayListType<elemType>::maxListSize()
{
return maxSize;
}//maxListSize()
template <class elemType>
void arrayListType<elemType>::print(ofstream &outfile) const
{
for (int i = 0; i < length; i++)
{
cout << list[i] << " ";
outfile << list[i] << " ";
}
cout << endl;
outfile << endl;
}
template <class elemType>
bool arrayListType<elemType>::isItemAtEqual (int location, const elemType& item)
{
return(list[location] == item);
}
template <class elemType>
void arrayListType<elemType>::insertAt (int location, const elemType& insertItem)
{
if (location < 0 || location >= maxSize)
cerr << "The position of the item to be inserted "
<< "is out of range" << endl;
else
if (length >= maxSize) //list is full
{
cerr << "Cannot insert in a full list" << endl;
}//if
else
{
for (int i = length; i > location; i--)
list[i] = list[i - 1]; //move the elements down
list[location] = insertItem; //insert the item at the
//specified position
length++; //increment the length
}
} //end insertAt
template <class elemType>
void arrayListType<elemType>::insertEnd (const elemType& insertItem)
{
if (length >= maxSize) //the list is full
{
cerr << "Cannot insert in a full list" << endl;
}//if
else
{
list[length] = insertItem; //insert the item at the end
length++; //increment the length
}//else
} //end insertEnd
template <class elemType>
void arrayListType<elemType>::removeAt (int location)
{
if (location < 0 || location >= length)
{
cerr << "The location of the item to be removed is out of range" << endl;
}//if
else
{
for (int i = location; i < length - 1; i++)
list[i] = list[i+1];
length--;
}
} //end removeAt
template <class elemType>
void arrayListType<elemType>::retrieveAt (int location, elemType& retItem)
{
if (location < 0 || location >= length)
cerr << "The location of the item to be retrieved is "
<< "out of range." << endl;
else
retItem = list[location];
} //end retrieveAt
template <class elemType>
void arrayListType<elemType>::replaceAt (int location, const elemType& repItem)
{
if (location < 0 || location >= length)
cerr << "The location of the item to be replaced is "
<< "out of range." << endl;
else
list[location] = repItem;
} //end replaceAt
template <class elemType>
void arrayListType<elemType>::clearList()
{
length = 0;
} //end clearList
template <class elemType>
int arrayListType<elemType>::seqSearch (const elemType& item)
{
int loc;
bool found = false;
for (loc = 0; loc < length; loc++)
if (list[loc] == item)
{
found = true;
break;
}
if (found)
return loc;
else
return -1;
} //end seqSearch
template <class elemType>
void arrayListType<elemType>::insert (const elemType& insertItem)
{
int loc;
if (length == 0) //list is empty
list[length++] = insertItem; //insert the item and
//increment the length
else if (length == maxSize)
cerr << "Cannot insert in a full list." << endl;
else
{
loc = seqSearch(insertItem);
if (loc == -1) //the item to be inserted
//does not exist in the list
list[length++] = insertItem;
else
cerr << "the item to be inserted is already in "
<< "the list. No duplicates are allowed." << endl;
}
} //insert()
template<class elemType>
void arrayListType<elemType>::remove (const elemType& removeItem)
{
int loc;
if (length == 0)
cerr << "Cannot delete from an empty list." << endl;
else
{
loc = seqSearch(removeItem);
if (loc != -1)
removeAt(loc);
else
cout << "The item to be deleted is not in the list."
<< endl;
}
} //end remove
template <class elemType>
arrayListType<elemType>::arrayListType (int size)
{
if (size < 0)
{
cerr << "The array size must be positive. Creating "
<< "an array of size 100. " << endl;
maxSize = 100;
}
else
maxSize = size;
length = 0;
moves = 0; //added to initilise iterations
iterations = 0; //added to initilize iterations
list = new elemType[maxSize];
assert(list != NULL);
}
template <class elemType>
arrayListType<elemType>::~arrayListType()
{
delete [] list;
}//Deconstructor
template <class elemType>
arrayListType<elemType>::arrayListType (const arrayListType<elemType>& otherList)
{
maxSize = otherList.maxSize;
length = otherList.length;
list = new elemType[maxSize]; //create the array
assert(list != NULL); //terminate if unable to allocate
//memory space
for (int j = 0; j < length; j++) //copy otherList
list [j] = otherList.list[j];
} //end copy constructor
template <class elemType>
const arrayListType<elemType>& arrayListType<elemType>::operator= (const arrayListType<elemType>& otherList)
{
if (this != &otherList) //Prevents use on self
{
delete [] list;
maxSize = otherList.maxSize;
length = otherList.length;
list = new elemType[maxSize];
assert(list != NULL); //Checks for if memory is avalible for use
for (int i = 0; i < length; i++)
list[i] = otherList.list[i];
}
return *this;
}
template <class elemType>
void arrayListType<elemType>::selectionSort()
{
int minIndex;
for (int loc = 0; loc < length - 1; loc++)
{
minIndex = minLocation(loc, length - 1);
swap(loc, minIndex);
}
}
template <class elemType>
void arrayListType<elemType>::insertionSort()
{
int firstOutOfOrder, location;
elemType temp;
for (firstOutOfOrder = 1; firstOutOfOrder < length;firstOutOfOrder++)
{
iterations++; //counter to count the following if statment comparisons
if (list[firstOutOfOrder] < list[firstOutOfOrder - 1])
{
temp = list[firstOutOfOrder];
location = firstOutOfOrder;
do
{
moves++; //increments moves as a move is about to take place
list[location] = list[location - 1];
location--;
iterations++;//at the end of this do while another compaison is made
} while (location > 0 && list[location - 1] > temp);
list[location] = temp;
}
}
} //end insertionSort
template <class elemType>
void arrayListType<elemType>::QuickSort(int first, int last)
{
int pivotLocation;
if (first < last)
{
pivotLocation = partition(first, last);
QuickSort(first, pivotLocation - 1);
QuickSort(pivotLocation + 1, last);
}
}
template <class elemType>
int arrayListType<elemType>::partition(int first, int last)
{
elemType pivot;
int index, smallIndex;
swap(first, (first + last) / 2);
pivot = list[first];
smallIndex = first;
for (index = first + 1; index <= last; index++)
{
iterations++; //keeps track of # of iterations called from quick sort
if (list[index] < pivot)
{
smallIndex++;
swap(smallIndex, index);
}
}
swap(first, smallIndex);
return smallIndex;
}
template <class elemType>
int arrayListType<elemType>::minLocation(int first, int last)
{
int minIndex;
minIndex = first;
for (int loc = first + 1; loc <= last; loc++)
{
if( list[loc] < list[minIndex])
minIndex = loc;
iterations++;//keep track of iterations for selection sort
}
return minIndex;
} //end minLocation
template <class elemType>
void arrayListType<elemType>::swap(int first, int second)
{
elemType temp;
moves++;
temp = list[first];
list[first] = list[second];
list[second] = temp;
}//end swap
template <class elemType>
int arrayListType<elemType>::getMoves()
{
int temp=moves;
moves=0;
return temp;
}
template <class elemType>
int arrayListType<elemType>::getIterations()
{
int temp=iterations;
iterations=0;
return temp;
}
#endif
Explanation / Answer
arrayListType.h
#ifndef H_arrayListType
#define H_arrayListType
#include <iostream>
#include <cassert>
using namespace std;
template <class elemType>
class arrayListType
{
public:
const arrayListType<elemType>& operator=
(const arrayListType<elemType>&);
//Overloads the assignment operator
bool isEmpty();
//Function to determine whether the list is empty
bool isFull();
//Function to determine whether the list is full.
int listSize();
//Function to determine the number of elements in the list
int maxListSize();
//Function to determine the size of the list.
void print() const;
//Function to output the elements of the list
bool isItemAtEqual(int location, const elemType& item);
//Function to determine whether the item is the same
void insertAt(int location, const elemType& insertItem);
//Function to insert an item in the list at the
void insertEnd(const elemType& insertItem);
//Function to insert an item at the end of the list.
void removeAt(int location);
//Function to remove the item from the list at the
void retrieveAt(int location, elemType& retItem);
//Function to retrieve the element from the list at the
void replaceAt(int location, const elemType& repItem);
//Function to replace the elements in the list at the
void clearList();
//Function to remove all the elements from the list.
int seqSearch(const elemType& item);
//Function to search the list for a given item.
void insert(const elemType& insertItem);
//Function to insert the item specified by the parameter
void remove(const elemType& removeItem);
//Function to remove an item from the list. The parameter
arrayListType(int size = 100);
//constructor
arrayListType(const arrayListType<elemType>& otherList);
//copy constructor
~arrayListType();
//destructor
//Deallocates the memory occupied by the array.
void insertionSort();
void selectionSort();
void shellSort();
protected:
elemType *list; //array to hold the list elements
int length; //to store the length of the list
int maxSize; //to store the maximum size of the list
int comparisons; //counter for sorting comparisons
int moves; //counter for sorting moves
void swap(int first, int second);
int minLocation(int first, int last);
void intervalInsertionSort(int begin, int inc);
};
template <class elemType>
bool arrayListType<elemType>::isEmpty()
{
return (length == 0);
}
template <class elemType>
bool arrayListType<elemType>::isFull()
{
return (length == maxSize);
}
template <class elemType>
int arrayListType<elemType>::listSize()
{
return length;
}
template <class elemType>
int arrayListType<elemType>::maxListSize()
{
return maxSize;
}
template <class elemType>
void arrayListType<elemType>::print() const
{
for (int i = 0; i < length; i++)
cout << list[i] << " ";
cout << endl;
}
template <class elemType>
bool arrayListType<elemType>::isItemAtEqual
(int location, const elemType& item)
{
return(list[location] == item);
}
template <class elemType>
void arrayListType<elemType>::insertAt
(int location, const elemType& insertItem)
{
if (location < 0 || location >= maxSize)
cerr << "The position of the item to be inserted "
<< "is out of range" << endl;
else
if (length >= maxSize) //list is full
cerr << "Cannot insert in a full list" << endl;
else
{
for (int i = length; i > location; i--)
list[i] = list[i - 1]; //move the elements down
list[location] = insertItem; //insert the item at the
//specified position
length++; //increment the length
}
} //end insertAt
template <class elemType>
void arrayListType<elemType>::insertEnd(const elemType& insertItem)
{
if (length >= maxSize) //the list is full
cerr << "Cannot insert in a full list" << endl;
else
{
list[length] = insertItem; //insert the item at the end
length++; //increment the length
}
} //end insertEnd
template <class elemType>
void arrayListType<elemType>::removeAt(int location)
{
if (location < 0 || location >= length)
cerr << "The location of the item to be removed "
<< "is out of range" << endl;
else
{
for (int i = location; i < length - 1; i++)
list[i] = list[i+1];
length--;
}
} //end removeAt
template <class elemType>
void arrayListType<elemType>::retrieveAt
(int location, elemType& retItem)
{
if (location < 0 || location >= length)
cerr << "The location of the item to be retrieved is "
<< "out of range." << endl;
else
retItem = list[location];
} //end retrieveAt
template <class elemType>
void arrayListType<elemType>::replaceAt
(int location, const elemType& repItem)
{
if (location < 0 || location >= length)
cerr << "The location of the item to be replaced is "
<< "out of range." << endl;
else
list[location] = repItem;
} //end replaceAt
template <class elemType>
void arrayListType<elemType>::clearList()
{
length = 0;
} //end clearList
template <class elemType>
int arrayListType<elemType>::seqSearch(const elemType& item)
{
int loc;
bool found = false;
for (loc = 0; loc < length; loc++)
if (list[loc] == item)
{
found = true;
break;
}
if (found)
return loc;
else
return -1;
} //end seqSearch
template <class elemType>
void arrayListType<elemType>::insert(const elemType& insertItem)
{
int loc;
if (length == 0) //list is empty
list[length++] = insertItem; //insert the item and
//increment the length
else if (length == maxSize)
cerr << "Cannot insert in a full list." << endl;
else
{
loc = seqSearch(insertItem);
if (loc == -1) //the item to be inserted
//does not exist in the list
list[length++] = insertItem;
else
cerr << "the item to be inserted is already in "
<< "the list. No duplicates are allowed." << endl;
}
} //end insert
template<class elemType>
void arrayListType<elemType>::remove(const elemType& removeItem)
{
int loc;
if (length == 0)
cerr << "Cannot delete from an empty list." << endl;
else
{
loc = seqSearch(removeItem);
if (loc != -1)
removeAt(loc);
else
cout << "The item to be deleted is not in the list."
<< endl;
}
} //end remove
template <class elemType>
arrayListType<elemType>::arrayListType(int size)
{
if (size < 0)
{
cerr << "The array size must be positive. Creating "
<< "an array of size 100. " << endl;
maxSize = 100;
}
else
maxSize = size;
length = 0;
list = new elemType[maxSize];
assert(list != NULL);
}
template <class elemType>
arrayListType<elemType>::~arrayListType()
{
delete [] list;
}
template <class elemType>
arrayListType<elemType>::arrayListType
(const arrayListType<elemType>& otherList)
{
maxSize = otherList.maxSize;
length = otherList.length;
list = new elemType[maxSize]; //create the array
assert(list != NULL); //terminate if unable to allocate
//memory space
for (int j = 0; j < length; j++) //copy otherList
list [j] = otherList.list[j];
} //end copy constructor
template <class elemType>
const arrayListType<elemType>& arrayListType<elemType>::operator=
(const arrayListType<elemType>& otherList)
{
if (this != &otherList) //avoid self-assignment
{
delete [] list;
maxSize = otherList.maxSize;
length = otherList.length;
list = new elemType[maxSize]; //create the array
assert(list != NULL); //if unable to allocate memory
//space, terminate the program
for (int i = 0; i < length; i++)
list[i] = otherList.list[i];
}
return *this;
}
template <class elemType>
void arrayListType<elemType>::selectionSort()
{
int minIndex;
for (int loc = 0; loc < length - 1; loc++)
{
minIndex = minLocation(loc, length - 1);
swap(loc, minIndex);
}
}
template <class elemType>
int arrayListType<elemType>::minLocation(int first, int last)
{
int minIndex;
minIndex = first;
for (int loc = first + 1; loc <= last; loc++)
if( list[loc] < list[minIndex])
minIndex = loc;
return minIndex;
} //end minLocation
template <class elemType>
void arrayListType<elemType>::swap(int first, int second)
{
elemType temp;
temp = list[first];
list[first] = list[second];
list[second] = temp;
cout << endl << "List after Swap: ";
for (int i = 0; i < length; i++)
cout << list[i] << " ";
cout << endl;
}//end swap
template <class elemType>
void arrayListType<elemType>::insertionSort()
{
int firstOutOfOrder, location;
elemType temp;
comparisons = 0;
moves = 0;
for (firstOutOfOrder = 1; firstOutOfOrder < length; firstOutOfOrder++)
{
comparisons++;
if (list[firstOutOfOrder] < list[firstOutOfOrder - 1])
{
temp = list[firstOutOfOrder];
location = firstOutOfOrder;
do
{
list[location] = list[location - 1];
location--;
comparisons++;
moves++;
}
while (location > 0 && list[location - 1] > temp);
comparisons--;
list[location] = temp;
moves++;
}
}
cout << endl << "insertionSort Comparisons = " << comparisons;
cout << endl << "insertionSort Moves = " << moves << endl;
}
template <class elemType>
void arrayListType<elemType>::shellSort()
{
int inc;
comparisons = 0;
moves = 0;
for (inc = 1; inc < (length - 1) / 9; inc = 3 * inc + 1);
do
{
for (int begin = 0; begin < inc; begin++)
intervalInsertionSort(begin, inc);
inc = inc / 3;
}
while (inc > 0);
cout << endl << "shellSort comparisons = " << comparisons;
cout << endl << "shellSort moves = " << moves << endl;
}
template <class elemType>
void arrayListType<elemType>::intervalInsertionSort(int begin, int inc)
{
int firstOutOfOrder, location;
elemType temp;
for (firstOutOfOrder = begin + inc; firstOutOfOrder < length; firstOutOfOrder += inc)
{
comparisons++;
if (list[firstOutOfOrder] < list[firstOutOfOrder - inc])
{
temp = list[firstOutOfOrder];
location = firstOutOfOrder;
do
{
list[location] = list[location - inc];
location -= inc;
comparisons++;
moves++;
}
while (location > 0 && list[location - inc] < temp);
comparisons--;
list[location] = temp;
moves++;
}
}
}
#endif
main.cpp
#include <stdlib.h>
#include <time.h>
#include <iostream>
#include "hashT.h"
#include "arrayListType.h"
using namespace std;
int main()
{
cout << "Creating default Hash Table with a size of 101" << endl;
hashT<int> hashTest;
int initialHashIndex;
int foundHashIndex;
int indexAt;
int num;
int record;
bool found;
cout << "Please enter a number for the hash index: ";
cin >> initialHashIndex;
cout << "Insert numbers into Hash Table, end with -999: " << endl;
cin >> num;
while (num != -999)
{
hashTest.insert(initialHashIndex, num);
cin >> num;
}
cout << endl << "Search for a number in the Hash Table: " << endl;
cin >> num;
foundHashIndex = initialHashIndex;
hashTest.search(foundHashIndex, num, found);
if (found == true)
cout << num << " is in the Hash Table at " << foundHashIndex << endl;
else
cout << num << " is not in the Hash Table." << endl;
cout << endl << "Testing isItemAtEqual, please enter index location: ";
cin >> indexAt;
cout << endl << "please enter record: ";
cin >> num;
cout << endl << num << " is " << hashTest.isItemAtEqual(indexAt, num) << endl;
cout << endl << "Retrieve a record by index. Please enter index location: ";
record = NULL;
cin >> num;
hashTest.retrieve(num, record);
if (record != NULL)
cout << endl << "The record at " << num << " is " << record << endl;
cout << endl << "Enter a number to remove from the Hash Table: ";
cin >> num;
hashTest.remove(initialHashIndex, num);
cout << endl << "Printing the Hash Table: ";
hashTest.print();
cout << endl << endl;
/* initialize random seed: */
srand (time(NULL));
arrayListType<int> insertSort1000(1000);
arrayListType<int> insertSort10k(10000);
cout << endl << "Creating Array of 1000 random elements" << endl;
while (!insertSort1000.isFull())
insertSort1000.insert(rand() % 100000 + 1);
cout << endl << "Creating Array of 10000 random elements" << endl;
while (!insertSort10k.isFull())
insertSort10k.insert(rand() % 1000000 + 1);
cout << endl << "Duplicating Array of 1000 random elements" << endl;
arrayListType<int> shellSort1000(insertSort1000);
cout << endl << "Duplicating Array of 10000 random elements" << endl;
arrayListType<int> shellSort10k(insertSort10k);
shellSort1000.print();
//shellSort10k.print();
cout << endl << "Using insertionSort on 1000 random elements Array" << endl;
insertSort1000.insertionSort();
//insertSort1000.print();
cout << endl << "Using shellSort on 1000 random elements Array" << endl;
shellSort1000.shellSort();
//shellSort1000.print();
cout << endl << "Using insertionSort on 10000 random elements Array" << endl;
insertSort10k.insertionSort();
//insertSort10k.print();
cout << endl << "Using shellSort on 10000 random elements Array" << endl;
shellSort10k.shellSort();
//shellSort10k.print();
cout << endl << "Finished" << endl;
return 0;
}
hashT.h
#ifndef H_Htable
#define H_Htable
#include <iostream>
#include <cassert>
using namespace std;
template <class elemType>
class hashT
{
public:
void insert(int hashIndex, const elemType& rec);
//Function to insert an item in the hash table. The first
void search(int& hashIndex, const elemType& rec, bool& found) const;
//Function to determine whether the item specified by the parameter
bool isItemAtEqual(int hashIndex, const elemType& rec) const;
//Function to determine whether the item specified by the parameter
void retrieve(int hashIndex, elemType& rec) const;
//Function to retrieve the item at position hashIndex.
void remove(int hashIndex, const elemType& rec);
//Function to remove an item from the hash table.
void print() const;
//Function to output the data.
hashT(int size = 101);
//constructor
~hashT();
//destructor
private:
elemType *HTable; //pointer to the hash table
int *indexStatusList; //pointer to the array indicating the
//status of a position in the hash table
int length; //number of items in the hash table
int HTSize; //maximum size of the hash table
};
template <class elemType>
void hashT<elemType>::insert(int hashIndex, const elemType& rec)
{
int pCount;
int inc;
pCount = 0;
inc = 1;
while(indexStatusList[hashIndex] == 1
&& HTable[hashIndex] != rec
&& pCount < HTSize / 2)
{
pCount++;
hashIndex = (hashIndex + inc ) % HTSize;
inc = inc + 2;
}
if(indexStatusList[hashIndex] != 1)
{
HTable[hashIndex] = rec;
indexStatusList[hashIndex] = 1;
length++;
}
else
if(HTable[hashIndex] == rec)
cerr<<"Error: No duplicates are allowed."<<endl;
else
cerr<<"Error: The table is full. "
<<"Unable to resolve the collision."<<endl;
}
template <class elemType>
void hashT<elemType>::search(int& hashIndex, const elemType& rec, bool& found) const
{
int pCount;
int inc;
pCount = 0;
inc = 1;
while(HTable[hashIndex] != rec
&& pCount < HTSize / 2)
{
if (indexStatusList[hashIndex] == 0)
break;
pCount++;
hashIndex = (hashIndex + inc ) % HTSize;
inc = inc + 2;
}
if (HTable[hashIndex] == rec)
found = true;
else
found = false;
}
template <class elemType>
bool hashT<elemType>::isItemAtEqual(int hashIndex, const elemType& rec) const
{
if (HTable[hashIndex] == rec)
return true;
else
return false;
}
template <class elemType>
void hashT<elemType>::retrieve(int hashIndex, elemType& rec) const
{
if (indexStatusList[hashIndex] == 1)
rec = HTable[hashIndex];
else
cout << endl << "No data at index" << endl;
}
template <class elemType>
void hashT<elemType>::remove(int hashIndex, const elemType& rec)
{
int pCount;
int inc;
pCount = 0;
inc = 1;
while(HTable[hashIndex] != rec
&& pCount < HTSize / 2)
{
if (indexStatusList[hashIndex] == 0)
break;
pCount++;
hashIndex = (hashIndex + inc ) % HTSize;
inc = inc + 2;
}
if (HTable[hashIndex] == rec)
{
HTable[hashIndex] = NULL;
indexStatusList[hashIndex] = -1;
length--;
}
else
cout << rec <<" is not in hash table" << endl;
}
template <class elemType>
void hashT<elemType>::print() const
{
cout << endl;
for (int i = 0; i < HTSize; i++)
if (indexStatusList[i] == 1)
cout << HTable[i] << " ";
}
template <class elemType>
hashT<elemType>::hashT(int size)
{
HTable = new elemType[size];
indexStatusList = new int[size];
for (int i = 0; i < size; i++)
indexStatusList[i] = 0;
HTSize = size;
length = 0;
}
template <class elemType>
hashT<elemType>::~hashT()
{
delete [] HTable;
delete [] indexStatusList;
}
#endif
sample output
Creating default Hash Table with a size of 101
Please enter a number for the hash index: 101
Insert numbers into Hash Table, end with -999:
34
4
6
-999
Search for a number in the Hash Table:
6
6 is in the Hash Table at 4
Testing isItemAtEqual, please enter index location: 3
please enter record: 6
6 is 0
Retrieve a record by index. Please enter index location: 0
No data at index
Enter a number to remove from the Hash Table: 34
Printing the Hash Table:
4 6
Creating Array of 1000 random elements
the item to be inserted is already in the list. No duplicates are allowed.
Duplicating Array of 1000 random elements
23491 31447 5799 27540 20319 46601 6453 71669 2329 39835 4022 53513 7240 98745 56562 12357 2055 12059 68046 61824 22839 47198 15718 66450 5885 45944 72936 468
40 46850 35019 7917 70340 82817 13715 14232 3135 76668 20684 91156 95348 76870 11529 48861 462 10273 21774 29170 28679 33833 97216 6855 56671 60765 22572 3947
Using insertionSort on 1000 random elements Array
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.