Creates an array of random integers of size 1,000,000. Develop the first algorit
ID: 3695206 • Letter: C
Question
Creates an array of random integers of size 1,000,000. Develop the first algorithm to find the Kth largest number from the array (1 <= K <= 1,000,000). The algorithm must be based upon using a heap of size of K. Measure and average the running times of your program. Develop the second algorithm to find the Kth largest number. You need to follow the quickselect algorithm to implement the solution. Measure and average the running times of your program. Please Provide : Source code. Performance analysis document that will record, compare, and analyze the running times of the two solutions.
Explanation / Answer
1st Algorithm:
1) Build a Max-Heap MH of the first k elements (arr[0] to arr[k-1]) of the given array. O(k)
2) For each element, after the k’th element (arr[k] to arr[n-1]), compare it with root of MH.
……a) If the element is less than the root then make it root and call heapify for MH
……b) Else ignore it.
// The step 2 is O((n-k)*logk)
3) Finally, root of the MH is the kth smallest element.
Time complexity of this solution is O(k + (n-k)*Logk)
#include<iostream>
#include<climits>
using namespace std;
// Prototype of a utility function to swap two integers
void swap(int *x, int *y);
// A class for Max Heap
class MaxHeap
{
int *harr; // pointer to array of elements in heap
int capacity; // maximum possible size of max heap
int heap_size; // Current number of elements in max heap
public:
MaxHeap(int a[], int size); // Constructor
void maxHeapify(int i); //To maxHeapify subtree rooted with index i
int parent(int i) { return (i-1)/2; }
int left(int i) { return (2*i + 1); }
int right(int i) { return (2*i + 2); }
int extractMax(); // extracts root (maximum) element
int getMax() { return harr[0]; } // Returns maximum
// to replace root with new node x and heapify() new root
void replaceMax(int x) { harr[0] = x; maxHeapify(0); }
};
MaxHeap::MaxHeap(int a[], int size)
{
heap_size = size;
harr = a; // store address of array
int i = (heap_size - 1)/2;
while (i >= 0)
{
maxHeapify(i);
i--;
}
}
// Method to remove maximum element (or root) from max heap
int MaxHeap::extractMax()
{
if (heap_size == 0)
return INT_MAX;
// Store the maximum vakue.
int root = harr[0];
// If there are more than 1 items, move the last item to root
// and call heapify.
if (heap_size > 1)
{
harr[0] = harr[heap_size-1];
maxHeapify(0);
}
heap_size--;
return root;
}
// A recursive method to heapify a subtree with root at given index
// This method assumes that the subtrees are already heapified
void MaxHeap::maxHeapify(int i)
{
int l = left(i);
int r = right(i);
int largest = i;
if (l < heap_size && harr[l] > harr[i])
largest = l;
if (r < heap_size && harr[r] > harr[largest])
largest = r;
if (largest != i)
{
swap(&harr[i], &harr[largest]);
maxHeapify(largest);
}
}
// A utility function to swap two elements
void swap(int *x, int *y)
{
int temp = *x;
*x = *y;
*y = temp;
}
// Function to return k'th largest element in a given array
int kthSmallest(int arr[], int n, int k)
{
// Build a heap of first k elements: O(k) time
MaxHeap mh(arr, k);
// Process remaining n-k elements. If current element is
// smaller than root, replace root with current element
for (int i=k; i<n; i++)
if (arr[i] < mh.getMax())
mh.replaceMax(arr[i]);
// Return root
return mh.getMax();
}
// Driver program to test above methods
int main()
{
int arr[] = {12, 3, 5, 7, 19};
int n = sizeof(arr)/sizeof(arr[0]), k = 4;
cout << "K'th smallest element is " << kthSmallest(arr, n, k);
return 0;
}
Algorithm2:
The worst case time complexity of this method is O(n2), but it works in O(n) on average.
#include<iostream>
#include<climits>
using namespace std;
int partition(int arr[], int l, int r);
// This function returns k'th smallest element in arr[l..r] using
// QuickSort based method. ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
int kthSmallest(int arr[], int l, int r, int k)
{
// If k is smaller than number of elements in array
if (k > 0 && k <= r - l + 1)
{
// Partition the array around last element and get
// position of pivot element in sorted array
int pos = partition(arr, l, r);
// If position is same as k
if (pos-l == k-1)
return arr[pos];
if (pos-l > k-1) // If position is more, recur for left subarray
return kthSmallest(arr, l, pos-1, k);
// Else recur for right subarray
return kthSmallest(arr, pos+1, r, k-pos+l-1);
}
// If k is more than number of elements in array
return INT_MAX;
}
void swap(int *a, int *b)
{
int temp = *a;
*a = *b;
*b = temp;
}
// Standard partition process of QuickSort(). It considers the last
// element as pivot and moves all smaller element to left of it
// and greater elements to right
int partition(int arr[], int l, int r)
{
int x = arr[r], i = l;
for (int j = l; j <= r - 1; j++)
{
if (arr[j] <= x)
{
swap(&arr[i], &arr[j]);
i++;
}
}
swap(&arr[i], &arr[r]);
return i;
}
// Driver program to test above methods
int main()
{
int arr[] = {12, 3, 5, 7, 4, 19, 26};
int n = sizeof(arr)/sizeof(arr[0]), k = 3;
cout << "K'th smallest element is " << kthSmallest(arr, 0, n-1, k);
return 0;
}
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.