1.Programming language-Java An airport has two concourses. Concourse I passenger
ID: 3699137 • Letter: 1
Question
1.Programming language-Java
An airport has two concourses. Concourse I passengers arrive at a rate of one every 15 ± 2 seconds. Concourse 2 passengers arrive at a rate of one every 10 ± 5 seconds. It takes 30 ± 5 seconds to walk down concourse I and 35 ± 10 seconds to walk down concourse 2. Both concourses empty into the main lobby, adjacent to the baggage claim. It takes 10 ± 3 seconds to reach the baggage claim area from the main lobby. Only 60% of the passengers go to the baggage claim area. Simulate the passage of 500 passengers through the airport system. How many of these passengers went through the baggage claim area? In this problem, the expected number through the baggage claim area can be computed by 0.60(500)=300. How close is the simulation estimate to the expected number? Why the difference if a difference exists?
Explanation / Answer
we are simulate 500 samples from bernoulli distribution with success probability is 0.6
samples are
x
1 1
2 1
3 1
4 0
5 1
6 1
7 0
8 1
9 1
10 0
11 1
12 1
13 1
14 0
15 0
16 1
17 1
18 1
19 1
20 0
21 1
22 1
23 0
24 1
25 0
26 0
27 0
28 0
29 1
30 0
31 0
32 0
33 0
34 1
35 0
36 0
37 0
38 1
39 1
40 1
41 1
42 1
43 0
44 0
45 1
46 0
47 0
48 0
49 1
50 1
51 1
52 1
53 1
54 0
55 1
56 1
57 0
58 0
59 0
60 1
61 0
62 0
63 0
64 0
65 1
66 1
67 1
68 0
69 0
70 1
71 0
72 0
73 1
74 1
75 1
76 1
77 0
78 0
79 1
80 1
81 0
82 0
83 1
84 0
85 1
86 1
87 1
88 1
89 0
90 0
91 0
92 0
93 1
94 0
95 1
96 1
97 0
98 1
99 1
100 0
101 1
102 1
103 0
104 1
105 0
106 1
107 1
108 1
109 0
110 1
111 1
112 0
113 1
114 1
115 0
116 0
117 1
118 1
119 1
120 1
121 1
122 1
123 1
124 0
125 1
126 1
127 1
128 1
129 1
130 1
131 0
132 1
133 0
134 1
135 1
136 1
137 0
138 0
139 1
140 1
141 1
142 0
143 0
144 1
145 1
146 0
147 0
148 0
149 1
150 1
151 1
152 0
153 0
154 1
155 0
156 1
157 0
158 1
159 0
160 1
161 0
162 1
163 1
164 1
165 1
166 0
167 0
168 0
169 0
170 1
171 0
172 1
173 0
174 1
175 0
176 1
177 1
178 1
179 0
180 1
181 0
182 0
183 0
184 1
185 1
186 0
187 0
188 0
189 0
190 1
191 0
192 0
193 1
194 0
195 0
196 0
197 0
198 1
199 1
200 1
201 0
202 0
203 1
204 1
205 0
206 1
207 1
208 1
209 1
210 1
211 0
212 1
213 1
214 1
215 1
216 1
217 0
218 1
219 0
220 1
221 1
222 1
223 1
224 1
225 1
226 0
227 0
228 1
229 1
230 1
231 1
232 1
233 0
234 1
235 1
236 0
237 1
238 1
239 1
240 1
241 0
242 1
243 0
244 1
245 0
246 1
247 1
248 0
249 0
250 0
251 1
252 0
253 0
254 1
255 0
256 0
257 1
258 0
259 1
260 0
261 1
262 0
263 1
264 1
265 0
266 1
267 1
268 0
269 1
270 1
271 0
272 0
273 1
274 1
275 1
276 0
277 1
278 0
279 1
280 0
281 1
282 0
283 1
284 1
285 1
286 0
287 0
288 0
289 1
290 0
291 1
292 0
293 1
294 1
295 0
296 1
297 1
298 1
299 1
300 1
301 1
302 1
303 1
304 1
305 1
306 1
307 1
308 1
309 0
310 0
311 1
312 0
313 1
314 0
315 0
316 0
317 0
318 1
319 0
320 1
321 0
322 1
323 0
324 0
325 1
326 1
327 0
328 0
329 1
330 0
331 1
332 0
333 1
334 1
335 1
336 1
337 1
338 0
339 1
340 1
341 1
342 1
343 1
344 1
345 1
346 1
347 0
348 0
349 0
350 1
351 0
352 0
353 1
354 0
355 1
356 0
357 1
358 1
359 0
360 0
361 1
362 1
363 0
364 1
365 1
366 0
367 0
368 1
369 1
370 0
371 1
372 0
373 0
374 0
375 1
376 0
377 1
378 1
379 1
380 1
381 0
382 1
383 1
384 1
385 1
386 1
387 1
388 0
389 1
390 0
391 1
392 1
393 1
394 1
395 1
396 0
397 0
398 0
399 0
400 1
401 1
402 0
403 0
404 1
405 1
406 1
407 1
408 1
409 1
410 1
411 0
412 1
413 0
414 0
415 0
416 0
417 1
418 1
419 1
420 1
421 1
422 1
423 1
424 1
425 0
426 1
427 0
428 0
429 1
430 0
431 1
432 1
433 0
434 1
435 0
436 1
437 0
438 1
439 0
440 1
441 1
442 0
443 1
444 1
445 0
446 1
447 1
448 0
449 0
450 0
451 0
452 0
453 1
454 0
455 1
456 0
457 1
458 1
459 1
460 0
461 0
462 1
463 1
464 0
465 0
466 1
467 1
468 1
469 1
470 1
471 1
472 1
473 0
474 0
475 1
476 1
477 1
478 0
479 0
480 0
481 1
482 1
483 0
484 1
485 0
486 1
487 0
488 1
489 1
490 1
491 0
492 0
493 0
494 1
495 1
496 0
497 0
498 1
499 0
500 1
so total sum of sample is 291 hence the proportion in sample is 291/500=0.582
How close can one expect this simulation estimate to be to the expected number who visit the baggage claim area?
we will find in terms of proportion in sample who much to expect. that is we are to find 95% confidence interval of the sample proportion using estimate of 0.582
we get the 95% confidence interval is (0.5794977, 0.6645023). Hence this proportion to expect from the sample
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.