#ifndef MAIN_SAVITCH_NODE2_H #define MAIN_SAVITCH_NODE2_H #include <cstdlib> //
ID: 3717421 • Letter: #
Question
#ifndef MAIN_SAVITCH_NODE2_H
#define MAIN_SAVITCH_NODE2_H
#include <cstdlib> // Provides NULL and size_t
#include <iterator> // Provides iterator and forward_iterator_tag
namespace main_savitch_6B
{
template <class Item>
class node
{
public:
// TYPEDEF
typedef Item value_type;
// CONSTRUCTOR
node(const Item& init_data=Item( ), node* init_link=NULL)
{ data_field = init_data; link_field = init_link; }
// MODIFICATION MEMBER FUNCTIONS
Item& data( ) { return data_field; }
node* link( ) { return link_field; }
void set_data(const Item& new_data) { data_field = new_data; }
void set_link(node* new_link) { link_field = new_link; }
// CONST MEMBER FUNCTIONS
const Item& data( ) const { return data_field; }
const node* link( ) const { return link_field; }
private:
Item data_field;
node *link_field;
};
// FUNCTIONS to manipulate a linked list:
template <class Item>
void list_clear(node<Item>*& head_ptr);
template <class Item>
void list_copy
(const node<Item>* source_ptr, node<Item>*& head_ptr, node<Item>*& tail_ptr);
template <class Item>
void list_head_insert(node<Item>*& head_ptr, const Item& entry);
template <class Item>
void list_head_remove(node<Item>*& head_ptr);
template <class Item>
void list_insert(node<Item>* previous_ptr, const Item& entry);
template <class Item>
std::size_t list_length(const node<Item>* head_ptr);
template <class NodePtr, class SizeType>
NodePtr list_locate(NodePtr head_ptr, SizeType position);
template <class Item>
void list_remove(node<Item>* previous_ptr);
template <class NodePtr, class Item>
NodePtr list_search(NodePtr head_ptr, const Item& target);
// FORWARD ITERATORS to step through the nodes of a linked list
// A node_iterator of can change the underlying linked list through the
// * operator, so it may not be used with a const node. The
// node_const_iterator cannot change the underlying linked list
// through the * operator, so it may be used with a const node.
// WARNING:
// This classes use std::iterator as its base class;
// Older compilers that do not support the std::iterator class can
// delete everything after the word iterator in the second line:
template <class Item>
class node_iterator
: public std::iterator<std::forward_iterator_tag, Item>
{
public:
node_iterator(node<Item>* initial = NULL)
{ current = initial; }
Item& operator *( ) const
{ return current->data( ); }
node_iterator& operator ++( ) // Prefix ++
{
current = current->link( );
return *this;
}
node_iterator operator ++(int) // Postfix ++
{
node_iterator original(current);
current = current->link( );
return original;
}
bool operator ==(const node_iterator other) const
{ return current == other.current; }
bool operator !=(const node_iterator other) const
{ return current != other.current; }
private:
node<Item>* current;
};
template <class Item>
class const_node_iterator
: public std::iterator<std::forward_iterator_tag, const Item>
{
public:
const_node_iterator(const node<Item>* initial = NULL)
{ current = initial; }
const Item& operator *( ) const
{ return current->data( ); }
const_node_iterator& operator ++( ) // Prefix ++
{
current = current->link( );
return *this;
}
const_node_iterator operator ++(int) // Postfix ++
{
const_node_iterator original(current);
current = current->link( );
return original;
}
bool operator ==(const const_node_iterator other) const
{ return current == other.current; }
bool operator !=(const const_node_iterator other) const
{ return current != other.current; }
private:
const node<Item>* current;
};
}
#include "node2.template"
#endif
#ifndef _DEQUE_H_
#define _DEQUE_H_
#include <iostream>
#include <cstdlib>
#include "node2.h"
using namespace main_savitch_6B;
template <typename T>
class deque
{
public:
typedef std::size_t size_type;
//postcondition: empty deque has been created
deque();
// postcondition: all resouroces allocated to the deque
// have been deallocated
~deque();
// postcondition: newly created deque is a copy of dq
deque(const deque<T>& dq);
// postcondition: current deque is a copy of dq
deque<T>& operator = (const deque<T>& dq);
//precondition: deque is not empty
// postcondition: reference to element at front of deque
// has been returned
T& front();
// precondition: deque is not empty
// postcondition: copy of element at front of deque
// has been returned
T front() const;
// precondition: deque is not empty
// postcondition: reference to element at front of deque
// has been returned
T& back();
// precondition: deque is not empty
// postcondition: copy of element at back of deque
// has been returned
T back() const;
// postcondition: entry has been inserted at the front
// of the deque
void push_front (const T& entry);
// postcondition: entry has been inserted at the back
// of the deque
void push_back (const T& entry);
// precondition: deque is not empty
// postcondition: element at front of deque has been removed
void pop_front();
// precondition: deque is not empty
// postcondition: element at back of deque has been removed
void pop_back();
// postcondition: number of elements in deque has been returned
size_type size() const;
// postcondition: whether deque is empty has been returned
bool empty() const;
// postcondition: returned whether 2 deques are equal - equal is defined
// as the deques have the same number of elements &
// corresponding elements are equal
template <typename U>
friend bool operator == (const deque<U>& dq1, const deque<U>& dq2);
// postcondition: dq has been display from front to rear on out
template <typename U>
friend std::ostream& operator<< (std::ostream& out, const deque<U>& dq);
private:
size_type count; // Total number of items in the queue
node<T>* first;
node<T>* last;
};
#include "deque.template"
#endif
Using the above node header and dequeue header, I need to construct a dequeue class.
Explanation / Answer
package com;
public class DList<T> {
private DNode<T> header, trailer;
private int size;
public DList() {
size = 0;
header = new DNode<T>(null, null, null);
trailer = new DNode<T>(null, header, null);
header.setNext(trailer);
}
// utility methods
public int size() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
// give clients access to nodes, but not to the header or trailer
public DNode<T> getFirst() throws Exception {
if (isEmpty())
throw new Exception("Empty");
return header.getNext();
}
public DNode<T> getLast() throws Exception {
if (isEmpty())
throw new Exception("Empty");
return trailer.getPrev();
}
public DNode<T> getNext(DNode<T> v) throws Exception {
DNode<T> ans = v.getNext();
if (ans == null || ans == trailer)
throw new Exception("No such node");
return ans;
}
public DNode<T> getPrev(DNode<T> v) throws Exception {
DNode<T> ans = v.getPrev();
if (ans == null || ans == header)
throw new Exception("No such node");
return ans;
}
// methods to change the list
public void addBefore(T d, DNode<T> v) {
DNode<T> u = v.getPrev();
DNode<T> x = new DNode<T>(d, u, v);
u.setNext(x);
v.setPrev(x);
size++;
}
public void addAfter(T d, DNode<T> v) {
DNode<T> w = v.getNext();
DNode<T> x = new DNode<T>(d, v, w);
v.setNext(x);
w.setPrev(x);
size++;
}
public void addFirst(T d) {
addAfter(d, header);
}
public void addLast(T d) {
addBefore(d, trailer);
}
public T remove(DNode<T> v) throws Exception {
if (v == header || v == trailer)
throw new Exception("Sentinel");
DNode<T> u = v.getPrev();
DNode<T> w = v.getNext();
w.setPrev(u);
u.setNext(w);
size--;
return v.getData();
}
// LinkedList testing methods:
public String toString() {
String ans = "";
DNode<T> n = header;
ans += "(H)<-->";
do {
n = n.getNext();
if (n == trailer)
ans += "(T)";
else
ans += (n.getData() + "<-->");
} while (n != trailer);
return ans;
}
}
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.