Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Write a program in Java/C++ to implement the Ford-Fulkerson Algorithm where the

ID: 3720773 • Letter: W

Question

Write a program in Java/C++ to implement the Ford-Fulkerson Algorithm where the augmenting paths are selected using Dinic's Approach (basically shortest paths). Your algorithm should run in polynomial time. Make sure to use appropriate data structures to ensure that your program runs fast in a practical sense as well. Your input is a Flow Network (i.e., the underlying directed graph, source vertex, sink vertex, capacities of all the edges). Your output should be the following.

       1. Value of Max Flow.

       2. An actual max flow (specify how much should flow in each edge).

       3. Value of Min Cut.

       4. An actual min cut (specify edges that form a min cut).

Explanation / Answer


// Java program for implementation of Ford Fulkerson algorithm
import java.util.*;
import java.lang.*;
import java.io.*;
import java.util.LinkedList;
class MaxFlow
{
static final int V = 6; //Number of vertices in graph
/* Returns true if there is a path from source 's' to sink
't' in residual graph. Also fills parent[] to store the
path */
boolean bfs(int rGraph[][], int s, int t, int parent[])
{
// Create a visited array and mark all vertices as not
// visited
boolean visited[] = new boolean[V];
for(int i=0; i<V; ++i)
visited[i]=false;
// Create a queue, enqueue source vertex and mark
// source vertex as visited
LinkedList<Integer> queue = new LinkedList<Integer>();
queue.add(s);
visited[s] = true;
parent[s]=-1;
// Standard BFS Loop
while (queue.size()!=0)
{
int u = queue.poll();
for (int v=0; v<V; v++)
{
if (visited[v]==false && rGraph[u][v] > 0)
{
queue.add(v);
parent[v] = u;
visited[v] = true;
}
}
}
// If we reached sink in BFS starting from source, then
// return true, else false
return (visited[t] == true);
}
// Returns tne maximum flow from s to t in the given graph
int fordFulkerson(int graph[][], int s, int t)
{
int u, v;
// Create a residual graph and fill the residual graph
// with given capacities in the original graph as
// residual capacities in residual graph
// Residual graph where rGraph[i][j] indicates
// residual capacity of edge from i to j (if there
// is an edge. If rGraph[i][j] is 0, then there is
// not)
int rGraph[][] = new int[V][V];
for (u = 0; u < V; u++)
for (v = 0; v < V; v++)
rGraph[u][v] = graph[u][v];
// This array is filled by BFS and to store path
int parent[] = new int[V];
int max_flow = 0; // There is no flow initially
// Augment the flow while tere is path from source
// to sink
while (bfs(rGraph, s, t, parent))
{
// Find minimum residual capacity of the edhes
// along the path filled by BFS. Or we can say
// find the maximum flow through the path found.
int path_flow = Integer.MAX_VALUE;
for (v=t; v!=s; v=parent[v])
{
u = parent[v];
path_flow = Math.min(path_flow, rGraph[u][v]);
}
// update residual capacities of the edges and
// reverse edges along the path
for (v=t; v != s; v=parent[v])
{
u = parent[v];
rGraph[u][v] -= path_flow;
rGraph[v][u] += path_flow;
}
// Add path flow to overall flow
max_flow += path_flow;
}
// Return the overall flow
return max_flow;
}
// Driver program to test above functions
public static void main (String[] args) throws java.lang.Exception
{
// Let us create a graph shown in the above example
int graph[][] =new int[][] { {0, 16, 13, 0, 0, 0},
{0, 0, 10, 12, 0, 0},
{0, 4, 0, 0, 14, 0},
{0, 0, 9, 0, 0, 20},
{0, 0, 0, 7, 0, 4},
{0, 0, 0, 0, 0, 0}
};
MaxFlow m = new MaxFlow();
System.out.println("The maximum possible flow is " +
m.fordFulkerson(graph, 0, 5));
}
}


// Java program for implementation of Ford Fulkerson algorithm
import java.util.*;
import java.lang.*;
import java.io.*;
import java.util.LinkedList;
class MaxFlow
{
static final int V = 6; //Number of vertices in graph
/* Returns true if there is a path from source 's' to sink
't' in residual graph. Also fills parent[] to store the
path */
boolean bfs(int rGraph[][], int s, int t, int parent[])
{
// Create a visited array and mark all vertices as not
// visited
boolean visited[] = new boolean[V];
for(int i=0; i<V; ++i)
visited[i]=false;
// Create a queue, enqueue source vertex and mark
// source vertex as visited
LinkedList<Integer> queue = new LinkedList<Integer>();
queue.add(s);
visited[s] = true;
parent[s]=-1;
// Standard BFS Loop
while (queue.size()!=0)
{
int u = queue.poll();
for (int v=0; v<V; v++)
{
if (visited[v]==false && rGraph[u][v] > 0)
{
queue.add(v);
parent[v] = u;
visited[v] = true;
}
}
}
// If we reached sink in BFS starting from source, then
// return true, else false
return (visited[t] == true);
}
// Returns tne maximum flow from s to t in the given graph
int fordFulkerson(int graph[][], int s, int t)
{
int u, v;
// Create a residual graph and fill the residual graph
// with given capacities in the original graph as
// residual capacities in residual graph
// Residual graph where rGraph[i][j] indicates
// residual capacity of edge from i to j (if there
// is an edge. If rGraph[i][j] is 0, then there is
// not)
int rGraph[][] = new int[V][V];
for (u = 0; u < V; u++)
for (v = 0; v < V; v++)
rGraph[u][v] = graph[u][v];
// This array is filled by BFS and to store path
int parent[] = new int[V];
int max_flow = 0; // There is no flow initially
// Augment the flow while tere is path from source
// to sink
while (bfs(rGraph, s, t, parent))
{
// Find minimum residual capacity of the edhes
// along the path filled by BFS. Or we can say
// find the maximum flow through the path found.
int path_flow = Integer.MAX_VALUE;
for (v=t; v!=s; v=parent[v])
{
u = parent[v];
path_flow = Math.min(path_flow, rGraph[u][v]);
}
// update residual capacities of the edges and
// reverse edges along the path
for (v=t; v != s; v=parent[v])
{
u = parent[v];
rGraph[u][v] -= path_flow;
rGraph[v][u] += path_flow;
}
// Add path flow to overall flow
max_flow += path_flow;
}
// Return the overall flow
return max_flow;
}
// Driver program to test above functions
public static void main (String[] args) throws java.lang.Exception
{
// Let us create a graph shown in the above example
int graph[][] =new int[][] { {0, 16, 13, 0, 0, 0},
{0, 0, 10, 12, 0, 0},
{0, 4, 0, 0, 14, 0},
{0, 0, 9, 0, 0, 20},
{0, 0, 0, 7, 0, 4},
{0, 0, 0, 0, 0, 0}
};
MaxFlow m = new MaxFlow();
System.out.println("The maximum possible flow is " +
m.fordFulkerson(graph, 0, 5));
}
}

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote