#5. Calculate 74 16 divided by 21 16 following the example below, and using a si
ID: 3723202 • Letter: #
Question
#5. Calculate 7416 divided by 2116 following the example below, and using a similar table
Example:
Remainde Ste Intial values Quotient Divisor Iteration 0 1 0000 0010 0000 0000 0111 Rem-Div 1: Rem 2b: Rem +Div, shift left logical Quotient, Q0 0000 0000 0111 3: Shift Div Right 1: Rem 2b: Rem +Div, shift left logical Quotient, Q0 = 0001 0000 2 Rem-Div 0000 0111 : Shift Div Right 1: Rem = Rem-Div 2b: Rem +Div, shift left logical Quotient, Q0 = 0000 1000 3 0000 0111 3: Shift Div Right 0000 0100 4 1: Rem Rem - Div 0000 0011 2:a: Rem >= 0 => Shift left logical Quotient, Q0-1 0001 : Shift Div Right 11: Rem 2:a: Rem >= 0 => Shift left Quotient, Q0 = 1 0000 0010 5 Rem-Div 0000 0001 0011 : Shift Div Right 0000 0001 final state 0011 0000 0001 0000 0001Explanation / Answer
Iteration
Steps
Quotient
Divisor
Remainder
0
Initial Steps
0000
0000 1000 0100 0100
0001 1100 1111 1000
1
Rem = Rem - Div
0001 0100 1011 0100
Rem >0 shift Q0 by 1
0001
Shift Div to right
0000 0100 0010 0010
2
Rem = Rem - Div
0001 0000 1001 0010
Rem >0 shift Q0 by 1
0011
Shift Div to right
0000 0010 0001 0001
3
Rem = Rem - Div
0000 1110 1000 0001
Rem >0 shift Q0 by 1
0111
Shift Div to right
0000 0001 0000 0000
4
Rem = Rem - Div
0000 1101 1000 0001
Rem >0 shift Q0 by 1
1111
Shift Div to right
0000 0000 1000 0000
5
Rem = Rem - Div
0000 1101 0000 0001
Rem >0 shift Q0 by 1
0001 1111
Shift Div to right
0000 0000 0100 0000
6
Rem = Rem - Div
0000 1100 1100 0001
Rem >0 shift Q0 by 1
0011 1111
Shift Div to right
0000 0000 0010 0000
7
Rem = Rem - Div
0000 1100 1010 0001
Rem >0 shift Q0 by 1
0111 1111
Shift Div to right
0000 0000 0001 0000
8
Rem = Rem - Div
0000 1100 1001 0001
Rem >0 shift Q0 by 1
1111 1111
Shift Div to right
0000 0000 0000 1000
9
Rem = Rem - Div
0000 1100 1000 1001
Rem >0 shift Q0 by 1
0001 1111 1111
Shift Div to right
0000 0000 0000 0100
10
Rem = Rem - Div
0000 1100 1000 0101
Rem >0 shift Q0 by 1
0011 1111 1111
Shift Div to right
0000 0000 0000 0010
11
Rem = Rem - Div
0000 1100 1000 0011
Rem >0 shift Q0 by 1
0111 1111 1111
Shift Div to right
0000 0000 0000 0001
Final State
0111 1111 1111
0000 0000 0000 0001
0000 1100 1000 0011
Iteration
Steps
Quotient
Divisor
Remainder
0
Initial Steps
0000
0000 1000 0100 0100
0001 1100 1111 1000
1
Rem = Rem - Div
0001 0100 1011 0100
Rem >0 shift Q0 by 1
0001
Shift Div to right
0000 0100 0010 0010
2
Rem = Rem - Div
0001 0000 1001 0010
Rem >0 shift Q0 by 1
0011
Shift Div to right
0000 0010 0001 0001
3
Rem = Rem - Div
0000 1110 1000 0001
Rem >0 shift Q0 by 1
0111
Shift Div to right
0000 0001 0000 0000
4
Rem = Rem - Div
0000 1101 1000 0001
Rem >0 shift Q0 by 1
1111
Shift Div to right
0000 0000 1000 0000
5
Rem = Rem - Div
0000 1101 0000 0001
Rem >0 shift Q0 by 1
0001 1111
Shift Div to right
0000 0000 0100 0000
6
Rem = Rem - Div
0000 1100 1100 0001
Rem >0 shift Q0 by 1
0011 1111
Shift Div to right
0000 0000 0010 0000
7
Rem = Rem - Div
0000 1100 1010 0001
Rem >0 shift Q0 by 1
0111 1111
Shift Div to right
0000 0000 0001 0000
8
Rem = Rem - Div
0000 1100 1001 0001
Rem >0 shift Q0 by 1
1111 1111
Shift Div to right
0000 0000 0000 1000
9
Rem = Rem - Div
0000 1100 1000 1001
Rem >0 shift Q0 by 1
0001 1111 1111
Shift Div to right
0000 0000 0000 0100
10
Rem = Rem - Div
0000 1100 1000 0101
Rem >0 shift Q0 by 1
0011 1111 1111
Shift Div to right
0000 0000 0000 0010
11
Rem = Rem - Div
0000 1100 1000 0011
Rem >0 shift Q0 by 1
0111 1111 1111
Shift Div to right
0000 0000 0000 0001
Final State
0111 1111 1111
0000 0000 0000 0001
0000 1100 1000 0011
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.