Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

AVL Tree : You are required to develop an AVL tree ( class AvlNode) to support t

ID: 3724587 • Letter: A

Question

AVL Tree

:

You are required to develop an AVL tree (

class AvlNode)

to support the following

operations

Find method

:

returns the node that contains the value indicated by the input

parameter;

Insert method:

insert the specified value into the AVL tree;

Remove method: remove the specified value from the AVL tree;

Inorder traversal method.

Testing data

You may test your program by do the following:

Insert 3, 2, 1, 4, 5, 6, 7, 16,

15, 14, 13, 12, 11, 10, 8, 9 into an initially empty AVL

tree, then

print the tree using Inorder traversal;

Remove 9, 6, 1, 3, then print the tree using Inorder traversal.

Explanation / Answer

// C program to delete a node from AVL Tree

#include<stdio.h>

#include<stdlib.h>

// An AVL tree node

struct Node

{

int key;

struct Node *left;

struct Node *right;

int height;

};

// A utility function to get maximum of two integers

int max(int a, int b);

// A utility function to get height of the tree

int height(struct Node *N)

{

if (N == NULL)

return 0;

return N->height;

}

// A utility function to get maximum of two integers

int max(int a, int b)

{

return (a > b)? a : b;

}

/* Helper function that allocates a new node with the given key and

NULL left and right pointers. */

struct Node* newNode(int key)

{

struct Node* node = (struct Node*)

malloc(sizeof(struct Node));

node->key = key;

node->left = NULL;

node->right = NULL;

node->height = 1; // new node is initially added at leaf

return(node);

}

// A utility function to right rotate subtree rooted with y

struct Node *rightRotate(struct Node *y)

{

struct Node *x = y->left;

struct Node *T2 = x->right;

// Perform rotation

x->right = y;

y->left = T2;

// Update heights

y->height = max(height(y->left), height(y->right))+1;

x->height = max(height(x->left), height(x->right))+1;

// Return new root

return x;

}

// A utility function to left rotate subtree rooted with x

// See the diagram given above.

struct Node *leftRotate(struct Node *x)

{

struct Node *y = x->right;

struct Node *T2 = y->left;

// Perform rotation

y->left = x;

x->right = T2;

// Update heights

x->height = max(height(x->left), height(x->right))+1;

y->height = max(height(y->left), height(y->right))+1;

// Return new root

return y;

}

// Get Balance factor of node N

int getBalance(struct Node *N)

{

if (N == NULL)

return 0;

return height(N->left) - height(N->right);

}

//function to find a node

struct Node* findNode(struct Node* root, int key){

if(root == NULL){

return root;

}

// If the key to be deleted is smaller than the

// root's key, then it lies in left subtree

if ( key < root->key )

root->left = findNode(root->left, key);

// If the key to be deleted is greater than the

// root's key, then it lies in right subtree

else if( key > root->key )

root->right = findNode(root->right, key);

else return root;

}

struct Node* find(struct Node* node, int element){

if(node != NULL){

if(node->key == element){

return node;

} else {

struct Node* foundNode = find(node->left, element);

if(foundNode == NULL) {

foundNode = find(node->right, element);

}

return foundNode;

}

} else {

return NULL;

}

}

struct Node* insert(struct Node* node, int key)

{

/* 1. Perform the normal BST rotation */

if (node == NULL)

return(newNode(key));

if (key < node->key)

node->left = insert(node->left, key);

else if (key > node->key)

node->right = insert(node->right, key);

else // Equal keys not allowed

return node;

/* 2. Update height of this ancestor node */

node->height = 1 + max(height(node->left),

height(node->right));

/* 3. Get the balance factor of this ancestor

node to check whether this node became

unbalanced */

int balance = getBalance(node);

// If this node becomes unbalanced, then there are 4 cases

// Left Left Case

if (balance > 1 && key < node->left->key)

return rightRotate(node);

// Right Right Case

if (balance < -1 && key > node->right->key)

return leftRotate(node);

// Left Right Case

if (balance > 1 && key > node->left->key)

{

node->left = leftRotate(node->left);

return rightRotate(node);

}

// Right Left Case

if (balance < -1 && key < node->right->key)

{

node->right = rightRotate(node->right);

return leftRotate(node);

}

/* return the (unchanged) node pointer */

return node;

}

/* Given a non-empty binary search tree, return the

node with minimum key value found in that tree.

Note that the entire tree does not need to be

searched. */

struct Node * minValueNode(struct Node* node)

{

struct Node* current = node;

/* loop down to find the leftmost leaf */

while (current->left != NULL)

current = current->left;

return current;

}

// Recursive function to delete a node with given key

// from subtree with given root. It returns root of

// the modified subtree.

struct Node* removeNode(struct Node* root, int key)

{

// STEP 1: PERFORM STANDARD BST DELETE

if (root == NULL)

return root;

// If the key to be deleted is smaller than the

// root's key, then it lies in left subtree

if ( key < root->key )

root->left = removeNode(root->left, key);

// If the key to be deleted is greater than the

// root's key, then it lies in right subtree

else if( key > root->key )

root->right = removeNode(root->right, key);

// if key is same as root's key, then This is

// the node to be deleted

else

{

// node with only one child or no child

if( (root->left == NULL) || (root->right == NULL) )

{

struct Node *temp = root->left ? root->left :

root->right;

// No child case

if (temp == NULL)

{

temp = root;

root = NULL;

}

else // One child case

*root = *temp; // Copy the contents of

// the non-empty child

free(temp);

}

else

{

// node with two children: Get the inorder

// successor (smallest in the right subtree)

struct Node* temp = minValueNode(root->right);

// Copy the inorder successor's data to this node

root->key = temp->key;

// Delete the inorder successor

root->right = removeNode(root->right, temp->key);

}

}

// If the tree had only one node then return

if (root == NULL)

return root;

// STEP 2: UPDATE HEIGHT OF THE CURRENT NODE

root->height = 1 + max(height(root->left),

height(root->right));

// STEP 3: GET THE BALANCE FACTOR OF THIS NODE (to

// check whether this node became unbalanced)

int balance = getBalance(root);

// If this node becomes unbalanced, then there are 4 cases

// Left Left Case

if (balance > 1 && getBalance(root->left) >= 0)

return rightRotate(root);

// Left Right Case

if (balance > 1 && getBalance(root->left) < 0)

{

root->left = leftRotate(root->left);

return rightRotate(root);

}

// Right Right Case

if (balance < -1 && getBalance(root->right) <= 0)

return leftRotate(root);

// Right Left Case

if (balance < -1 && getBalance(root->right) > 0)

{

root->right = rightRotate(root->right);

return leftRotate(root);

}

return root;

}

/* Given a binary tree, print its nodes in inorder*/

void inorder(struct Node* node)

{

if (node == NULL)

return;

/* first recur on left child */

inorder(node->left);

/* then print the data of node */

printf("%d ", node->key);

/* now recur on right child */

inorder(node->right);

}

/* Drier program to test above function*/

int main()

{

struct Node *root = NULL;

struct Node *node = NULL;

/* Constructing tree */

root = insert(root, 3);

root = insert(root, 2);

root = insert(root, 1);

root = insert(root, 4);

root = insert(root, 5);

root = insert(root, 6);

root = insert(root, 7);

root = insert(root, 16);

root = insert(root, 15);

root = insert(root, 14);

root = insert(root, 13);

root = insert(root, 12);

root = insert(root, 11);

root = insert(root, 10);

root = insert(root, 8);

root = insert(root, 9);

printf("Inorder traversal of the constructed AVL "

"tree is ");

inorder(root);

  

  

root = removeNode(root, 9);

root = removeNode(root, 6);

root = removeNode(root, 1);

root = removeNode(root, 3);

printf(" Inorder traversal after deletion ");

inorder(root);

return 0;

}

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote