I am trying to write a program to solve this problem for discrete math. I am all
ID: 3750799 • Letter: I
Question
I am trying to write a program to solve this problem for discrete math. I am allowed to use any language. I prefer to use either Java or C++. Would anyone mind helping me? We need to produce a table. One of the restrictions is that we are not allowed to use "||" and "&&" in our functions.
Write a program with a language of your choice that produces a truth table for the following proposition: NOTE 1/ Your program must have the following functions: boolean implication( boolean p, boolean q) boolean or(boolean p, boolean q) boolean and(boolean p, boolean boolean biconditional(boolean p, boolean q) boolean negation(boolean p) q) 2/ Do not use || and && in your functions. 3/ Your program should use only six columns (one for each variable, and one for the given proposition.Explanation / Answer
#include <iostream>
#include <stdbool.h>
// here 0 implies false and 1 implies true
// code is in c++
using namespace std;
bool Or(bool p , bool q)
{
if(p==1)
{
return 1;
}
else if(q==1)
return 1;
return 0;
}
bool And(bool p , bool q)
{
if(p==1)
{
if(q==1)
return 1;
}
return 0;
}
bool biconditional(bool p , bool q)
{
if(p==q)
{
return 1;
}
return 0;
}
bool implication(bool p , bool q)
{
if(q==1)
{
return 1;
}
else if(p==q)
return 1;
return 0;
}
bool negation(bool p)
{
if(p==1)
{
return 0;
}
return 1;
}
int main()
{
cout<< " " << "p" << " " << "q" << " " << "r" << " " << "s" << " " << "t" << " " << "expression" << endl;
for(int i=0;i<=1;i++)
{
bool p=i;
for(int i=0;i<=1;i++)
{
bool q=i;
for(int i=0;i<=1;i++)
{
bool r=i;
for(int i=0;i<=1;i++)
{
bool s=i;
for(int i=0;i<=1;i++)
{
bool t=i;
bool x = implication(p,q);
bool y = And(r,t);
x = biconditional(x,y);
x = Or(x,negation(s));
cout<< " " << p << " " << q << " " << r << " " << s << " " << t << " " << x << endl;
}
}
}
}
}
}
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.