Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Use matlab thanks! Variables used below: vector a = [1 3 5] vector b = [-3 -2 4]

ID: 3764593 • Letter: U

Question

Use matlab thanks!

Variables used below: vector a = [1 3 5] vector b = [-3 -2 4] A = [1 2 4 3 1 1 0 2 3 ] B = [0 1 2 1 3 0 1 3 3] Calculate the dot product of vectors vector a and vector b by hand. Now use the vector and matrix commands in Matlab to calculate c = vector a . vector b. Calculate the determinant of A by hand. Now use Matlab to calculate vector d = vector a * vector b. Calculate the determinant of A by hand. Now use Matlab to calculate the determinants of A and B. Use Matlab to calculate the inverse of A. Now use Matlab to show that AA^-1 = A^-1 A.

Explanation / Answer

1) dot product of a and b =1*-3 + 3*-2 + 5*4=-3+-6+20=11

Matlab code :
   a=[1 3 5]
   b=[-3 -2 4]
   x=dot(a,b)

2) Matlab code :
   a=[1 3 5]
   b=[-3 -2 4]
   x=cross(a,b)
3) Matlab code :
   A=[1 3 0;2 1 2;4 1 3]
   B=[0 1 1;1 3 3;2 0 3]
   x=det(A)
   y=det(B)
4)Matlab code :
   A=[1 3 0;2 1 2;4 1 3]
   B=[0 1 1;1 3 3;2 0 3]
   X=inv(A)
   Y=A*X
   Z=X*A
you can check whether Y=X