Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Create the following functions in MATLAB: function D=inverses(A) which takes as

ID: 3797857 • Letter: C

Question

Create the following functions in MATLAB: function D=inverses(A) which takes as an input annex matrix A. First, the function has to determine whether A is invertible (you may want to use the function rank to do that). If A is not invertible, the function has to return an empty matrix d=[]; and terminates with a message "Matrix A is not invertible". If A is invertible, then the function reduces the matrix [A eye(n)] into the reduced echelon form and returns the matrix D that is the inverse of the matrix A. You can use a MATLAB built-in function rref for this part. **Type the functions inverses in your diary file. **Run the function D=inverses(A) on the given choices of the matrices A in (a)-(d). A = [4 -6 7 -1 0 1 -5 2 -7 11 10 3 -7 9 19 -1] A = [1 -3 2 -4 3 9 -6 12 2 -1 4 2 -4 5 -3 7], A = magic (5) **Run a built-in MATLAB function inv on the matrices A for parts (c) and (d). % Write a comment in you diary file why the result obtained by using inv function is inaccurate for the matrix in part (d).

Explanation / Answer

The MATLAB function for the finding inverse is given below:

%%function definition starts here:

%% Inverse finding

function D=inverses(A)

detA=det(A);

if detA==0

disp(' A is not Invertible');

D=[];

else

n=size(A);

B=[A eye(n)];

D_A=rref(B);

D=D_A(:,n+1:2*n);

end

%% function definition ends here

%% MATLAB code to run function

clc;

close all;

clear all;

%%

disp('Solution for a');

A=[4 0 -7 -7

-6 1 11 9

7 -5 10 19

-1 2 3 -1];

disp('Using inverses function');

inv_A=inverses(A);

disp(inv_A);

disp('Using MATLAB function inv()');

inv_matlab=inv(A);

disp(inv_matlab);

%% Solution for b

disp('Solution for b');

A=[1 -3 2 -4

-3 9 -1 5

2 -6 4 -3

-4 12 2 7];

disp('Using inverses function');

inv_A=inverses(A);

disp(inv_A);

disp('Using MATLAB function inv()');

inv_matlab=inv(A);

disp(inv_matlab);

%% Solution for c

disp('Solution for c');

A=magic(5);

disp('Using inverses function')

inv_A=inverses(A);

disp(inv_A);

disp('Using MATLAB function inv()');

inv_matlab=inv(A);

disp(inv_matlab);

%% Solution for d

disp('Solution for d');

A=magic(4);

disp('Using inverses function')

inv_A=inverses(A);

disp(inv_A);

disp('Using MATLAB function inv()')

inv_matlab=inv(A);

disp(inv_matlab);

disp(' The inv function fails if determinant of matrix is close to zero. Matrix is close to singular or badly scaled. Results may be inaccurate')

OUTPUT:

Solution for a

Using inverses function

-19 -14 0 7

-549 -401 -2 196

267 195 1 -95

-278 -203 -1 99

Using MATLAB function inv()

-19.0000 -14.0000 -0.0000 7.0000

-549.0000 -401.0000 -2.0000 196.0000

267.0000 195.0000 1.0000 -95.0000

-278.0000 -203.0000 -1.0000 99.0000

Solution for b

Using inverses function

A is not Invertible

Using MATLAB function inv()

Warning: Matrix is singular to working precision.

> In Run_inverse_func at 27

Inf Inf Inf Inf

Inf Inf Inf Inf

Inf Inf Inf Inf

Inf Inf Inf Inf

Solution for c

Using inverses function

-0.0049 0.0512 -0.0354 0.0012 0.0034

0.0431 -0.0373 -0.0046 0.0127 0.0015

-0.0303 0.0031 0.0031 0.0031 0.0364

0.0047 -0.0065 0.0108 0.0435 -0.0370

0.0028 0.0050 0.0415 -0.0450 0.0111

Using MATLAB function inv()

-0.0049 0.0512 -0.0354 0.0012 0.0034

0.0431 -0.0373 -0.0046 0.0127 0.0015

-0.0303 0.0031 0.0031 0.0031 0.0364

0.0047 -0.0065 0.0108 0.0435 -0.0370

0.0028 0.0050 0.0415 -0.0450 0.0111

Solution for d

Using inverses function

0 -0.1544 0.1838 0.0294

0 0.8162 -0.2574 -0.4412

0 -0.7206 0.1912 0.4706

1.0000 3.0000 -3.0000 -1.0000

Using MATLAB function inv()

Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.306145e-17.

> In Run_inverse_func at 45

1.0e+14 *

0.9382 2.8147 -2.8147 -0.9382

2.8147 8.4442 -8.4442 -2.8147

-2.8147 -8.4442 8.4442 2.8147

-0.9382 -2.8147 2.8147 0.9382

Explanation for different result in case of magic(4) :

The inv function fails if determinant of matrix is close to zero. Matrix is close to singular or badly scaled. Results may be inaccurate

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote