Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

q1 using matlap The following parametric equations generate a conical helix. x =

ID: 3811548 • Letter: Q

Question

q1 using matlap

The following parametric equations generate a conical helix. x = t cos(5t) y = t sin(5t) z = t^3 Where t = 0 to 6 pi with an increment of pi/128. Using subplot, generate the plot with proper label and title. Write a program in function file to compute the value of x for any real value. For imaginary value use 'error' syntax. x = squareroot a Where a = -10, -8, 8, 10 Plot the function, f(x) = 1 - 4x - x^2, from x = 1 to 2 using fplot, and find out the approximate root by graphical method. Also find the root by using fzero.

Explanation / Answer

Solution1:

subplot(2,2,1);
t =0:3.14/128:6*3.14;
x = t.*cos(5*t);
plot(t,x)

xlabel('0 < t < 6pi'); % x-axis label
ylabel('x values') % y-axis label
title('Subplot 1: tcos(5t)')

subplot(2,2,2);
t =0:3.14/128:6*3.14;

y = t.*sin(5*t);

plot(t,y)

xlabel('0 < t < 6pi'); % x-axis label

ylabel('y values') % y-axis label

title('Subplot 2: tsin(5t)')

subplot(2,2,3);
t =0:3.14/128:6*3.14;

z =t.*t.*t;

plot(t,z)

xlabel('0 < t < 6pi'); % x-axis label

ylabel('z values') % y-axis label

title('Subplot 3: t^3')

Solution2:

function [ x ] = ti( a )
x=sqrt(a);
end

Solution3:

syms x
fplot(matlabFunction(1-4.*x-x.*x),[-1 2])
fzero(matlabFunction(1-4.*x-x.*x),[-1 2])