q1 using matlap The following parametric equations generate a conical helix. x =
ID: 3811548 • Letter: Q
Question
q1 using matlap
The following parametric equations generate a conical helix. x = t cos(5t) y = t sin(5t) z = t^3 Where t = 0 to 6 pi with an increment of pi/128. Using subplot, generate the plot with proper label and title. Write a program in function file to compute the value of x for any real value. For imaginary value use 'error' syntax. x = squareroot a Where a = -10, -8, 8, 10 Plot the function, f(x) = 1 - 4x - x^2, from x = 1 to 2 using fplot, and find out the approximate root by graphical method. Also find the root by using fzero.Explanation / Answer
Solution1:
subplot(2,2,1);
t =0:3.14/128:6*3.14;
x = t.*cos(5*t);
plot(t,x)
xlabel('0 < t < 6pi'); % x-axis label
ylabel('x values') % y-axis label
title('Subplot 1: tcos(5t)')
subplot(2,2,2);
t =0:3.14/128:6*3.14;
y = t.*sin(5*t);
plot(t,y)
xlabel('0 < t < 6pi'); % x-axis label
ylabel('y values') % y-axis label
title('Subplot 2: tsin(5t)')
subplot(2,2,3);
t =0:3.14/128:6*3.14;
z =t.*t.*t;
plot(t,z)
xlabel('0 < t < 6pi'); % x-axis label
ylabel('z values') % y-axis label
title('Subplot 3: t^3')
Solution2:
function [ x ] = ti( a )
x=sqrt(a);
end
Solution3:
syms x
fplot(matlabFunction(1-4.*x-x.*x),[-1 2])
fzero(matlabFunction(1-4.*x-x.*x),[-1 2])
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.