Given: Show all work: Each letter is an operand The operators and order of opera
ID: 3812801 • Letter: G
Question
Given:
Show all work:
Each letter is an operand
The operators and order of operation is as follows from highest to lowest
$ Exponent
*, /, % Multiplication, division, remainder
+, - Addition, subtraction
(4 points each conversion)
Transform each of the following expressions to prefix then postfix
A - B + C
(A – B) / (C + D) $ E * F
(A – B) * (C $ (D + E) – F) + G
(A – ((( B + C) * (D + E) – F) * G)) $ (H + J)
(A / B) – ((C * D) + ( E / F))
Transform each of the following prefix expressions to infix (USE PARENTHESES)
- + A B C
– A + B C
- - A + / $ B C D * - E F / G H I
- + $ A B C / D * / E F G
– A / B * C $ D E
Transform each of the following postfix expressions to infix (USE PARENTHESES)
A B – C +
A B C - +
A B + C - D E F + - $
A B + C – B A + C $ -
A B C D E + - $ * F G / -
Explanation / Answer
1) a ) A - B + C
Prefix : + - A B C
Postfix : A B - C +
b) (A – B) / (C + D) $ E * F
Prefix :* / - A B $ + C D E F
Postfix: A B- C D + $ E / F *
c) (A – B) * (C $ (D + E) – F) + G
Prefix : + * - A B - $ c +D E F G
Postfix : A B- C $ D E + – F * G +
d) (A – ((( B + C) * (D + E) – F) * G)) $ (H + J)
Prefix :$ - A * - *+ B C + D E F G + H J
Postfix :A – B C + D E + – F * G * $ H J +
e) (A / B) – ((C * D) + ( E / F))
Prefix : - / A B + * C D / E F
Postfix : A B / – C D * E F / +
2 ) a) - + A B C
infix : ((A+B)-C)
b) - A + B C
infix : (A-(B+C))
c) - A + / $ B C D * E F / G H I
infix : The given prefix expression is Invalid , hence cannot be converted to infix
d) - + $ A B C / D * / E F G
infix : (((A$B)+C)-(D/((E/F)*G)))
e) – A / B * C $ D E
infix : (A-(B/(C*(D$E))))
3) a) A B – C +
Infix : (A-B) + C
b) A B C - +
Infix : A + B - C
c) A B + C - D E F + - $
infix : (A + B - C) $ (D - (E + F))
d) A B + C – B A + C $ -
infix : (A+B-C ) $ (B+A-C)
e) A B C D E + - $ * F G / -
infix : A * B $ (C - (D + E)) - F / G
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.