In this question, Use SVM for a few experiments. There are many good implementat
ID: 3813117 • Letter: I
Question
In this question, Use SVM for a few experiments. There are many good implementations of SVM, e.g., MATLAB built-in functions, and LIBSVM. You can use either of them, or other implementations found by yourself to solve the following questions. a. USPS is a hand-written digit database including ten digits, i.e., 0, 1, 2, ..., 9, each of which has more than 1000 samples, and in total there are 11000 samples. The resolution of each image is 16 times 16, and thus the length of each vector is 256. In this question, you will use SVM for the digit classification. For each digit, you will use the first 10, 50, or 100 images as the training data, and the rest as test data to finish this multi-class classification problem. In each setting, you will be required to use: (1) linear kernel, (2) polynomial kernel, (3) Gaussian kernel. As there are a few model parameters for each kernel, e.g., band-width sigma sigma in Gaussian kernel, and the common slack variable CC, you will need to use cross-validation on the training set to select the best model parameters. You can use grid search to find the best values for them. So, in total there are 9 different results (recognition accuracy) from 3 different training setting and 3 different kernels. b. You will use PIE database for the same tasks introduced in Q1(a). As we have fewer data samples per class in PIE databases, we will use the first 5, 10, or 15 images as the training samples in each setting. Also, you are expected to show 9 different results (recognition accuracy).Explanation / Answer
.data
# const string for welcome
welc: .asciiz "Welcome to SPIM Calculator one.0! "
p_int: .asciiz " Please offer associate integer: "
p_op: .asciiz " Please offer associate operator: "
i_err: .asciiz " Input Incorrect, unhealthy operator! "
again_str: .asciiz "Another calculation? (y/n)"
rmndr: .asciiz " r: "
new_line: .asciiz " "
int1: .word one # house to carry int one
int2: .word one # house to carry int a pair of
raw_in: .space one # house to carry raw input
op: .space one # house to carry operator char
a_char: .space one # house to carry once more char
out: .word one # house to carry output
remain: .word one # house to carry remainder
#operator constants
c_plus: .ascii "+" # const for +
c_min: .asciiz "-" # const for -
c_mult: .asciiz "*" # const for *
c_divi: .asciiz "/" # const for /
c_eq: .asciiz "=" # const for =
c_no: .asciiz "n" # const for n
.text
.globl main
main: li $v0, four # syscall four, print string
la $a0, welc # offer argument: string
syscall # really print string
calc: la $t6, stay # load remainder variable
move $t6, $zero # store zero in remainder (reset)
li $v0, four # syscall four, print string
la $a0, purpose # offer argument: string
syscall # really print string
li $v0, five # tell syscall we would like to scan int one
syscall # really scan in int one
la $s1, int1 # load int1 into $s1
move $s1, $v0 # copy the number from $v0 to int1
li $v0, four # syscall four, print string
la $a0, purpose # offer argument: string
syscall # really print string
li $v0, five # tell syscall we would like to scan int a pair of
syscall # really scan in int a pair of
la $s2, int2 # offer $s2 the address to carry int a pair of
move $s2, $v0 # copy the number from $v0 to $s2
li $v0, four # syscall four, print string
la $a0, p_op # offer argument: string
syscall # really print string
li $v0, eight # tell syscall we would like to scan operator
la $a0, op # offer $a0 the address to carry the operator
syscall # really scan in operator
lb $t0, op # load the primary computer memory unit of op
li $t1, '+' # load const for and
li $t2, '-' # load const for minus
li $t3, '*' # load const for multiplying
li $t4, '/' # load const for dividing
la $s0, out # load bent $s0
beq $t0, $t1, and # we're adding
beq $t0, $t2, minus # we're subtracting
beq $t0, $t3, multi # we're multiplying
beq $t0, $t4, divi # we're dividing
# else
j error # incorrect input
plus: add $s0, $s1, $s2 # add our ints, store in $t0
j print
minus: sub $s0, $s1, $s2 # compute our ints, store in $t0
j print
multi: slt $t1, $t2, $s2 # if our counter is a smaller amount than int2, set $t1 to one
beq $t1, $zero, print # if we've reached int2, we're done
add $s0, $s1, $s1 # add int1 and int1, store in out
j multi # loop
divi: la $t0 stay # load remainder into $t0
move $t0, $s1 # set remainder to dividend
add $s0, $zero, $zero # commenced to zero, simply just in case
loop: slt $t1, $t0, $s2 # if remainder is a smaller amount than divisor, set 1
beq $t1, $zero, print # if we're done branch to done
sub $t0, $t0, $s2 # sub divisor from remainder, store in remainder
addi $s0, $s0, one # increment quotient by one
j loop # loop
print: li $v0, one # tell syscall we would like to print int
la $a0, int1 # offer syscall int1 to print
syscall # really print int
li $v0, four # tell syscall we would like to print string
lb $a0, op # tell syscall we would like to print operator
syscall # really print string
li $v0, one # tell syscall we would like to print int
la $a0, int2 # offer syscall int2 to print
syscall # really print int
li $v0, four # tell syscall we would like to print string
la $a0, c_eq # tell syscall we would like to print operator
syscall # really print string
li $v0, one # tell syscall we would like to print number
la $a0, out # offer syscall our output
syscall # really print int
la $t0, stay # load remainder
beq $t0, $zero, once more # if we've no remainder, end printing
li $v0, four # tell syscall we would like to print string
la $a0, rmndr # tell syscall we would like to print remainder string
syscall # print "r: "
li $v0, one # tell syscall we would like to print int
la $a0, stay # offer syscall our remainder to print
syscall # print remainder
again: li $v0, four # tell syscall we would like to print string
la $a0, printing operation # tell syscall to print printing operation
syscall
la $a0, once more_str # load prompt for again string for syscall
syscall
li $v0, eight # tell syscall we would like to scan string
la $a0, a_char # tell syscall to place it in $a0
syscall
lb $t0, a_char
li $t1, 'n' # get n char therefore we will compare
beq $t0, $t1, exit # if we have a tendency to square measure done, exit
#else loop
j calc # jump to starting
error: li $v0, four # tell syscall we would like to print string
la $a0, i_err # offer syscall what to print
syscall # really print
j once more # head to prompt for rehear
exit: li $v0, ten # exit code
syscall #exit!
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.