Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

PYTHON \'\'\'Provides basic operations for Binary Search Trees using a tuple rep

ID: 3813479 • Letter: P

Question

PYTHON

'''Provides basic operations for Binary Search Trees using

a tuple representation.  In this representation, a BST is

either an empty tuple or a length-3 tuple consisting of a data value, a BST called the left subtree and

a BST called the right subtree '''

def is_bintree(T):     

    if type(T) is not tuple:         

        return False     

    if T == ():         

        return True     

    if len(T) != 3:         

        return False     

    if is_bintree(T[1]) and is_bintree(T[2]):         

        return True     

    return False

def bst_min(T):     

    if T == ():         

        return None     

    if not T[1]:                

        return T[0]     

    return bst_min(T[1])

    def bst_max(T):     

        if T == ():         

            return None     

        if not T[2]:                

            return T[0]     

        return bst_max(T[2])

    

def is_bst(T):     

     if not is_bintree(T):         

         return False

    if T == ():         

        return True

    if not is_bst(T[1]) or not is_bst(T[2]):

        return False         

        

    if T[1] == () and T[2] == ():         

        return True        

    

    if T[2] == ():         

         return bst_max(T[1]) < T[0]     

    if T[1] == ():         

        return T[0] < bst_min(T[2])     

    return bst_max(T[1]) < T[0] < bst_min(T[2])   

    def bst_search(T,x):     

        if T == ():         

            return T     

        if T[0] == x:         

            return T     

        if x < T[0]:         

            return bst_search(T[1],x)     

        return bst_search(T[2],x)

    def bst_insert(T,x):     

        if T == ():         

            return (x,(),())     

        elif x < T[0]:         

            return (T[0],bst_insert(T[1],x),T[2])

        else:         

            return (T[0],T[1],bst_insert(T[2],x))

    def delete_min(T):     

        if T == ():         

            return T        

        if not T[1]:                

            return T[2]     

        else:         

            return (T[0],delete_min(T[1]),T[2])

    def bst_delete(T,x):     

        assert T, "deleting value not in tree"                 

        

        if x < T[0]:         

            return (T[0],bst_delete(T[1],x),T[2])     

        elif x > T[0]:         

            return (T[0],T[1],bst_delete(T[2],x))     

        else:         

            # T[0] == x         

            if not T[1]:             

                return T[2]         

            elif not T[2]:             

                return T[1]         

            else:            

                return (bst_min(T[2]),T[1],delete_min(T[2]))

    def print_bintree(T,indent=0):     

        if not T:         

            print('*')         

            return     

        else:         

            print(T[0])         

            print(' '*(indent + len(T[0])-1)+'---', end = '')         

            print_bintree(T[1],indent+3)        

            print(' '*(indent + len(T[0])-1)+'---', end = '')         

            print_bintree(T[2],indent+3)  

    def print_func_space(x):     

        print(x,end=' ')

    def inorder(T,f):     

        if not is_bst(T):         

            return     

        if not T:         

            return     

        inorder(T[1],f)    

        f(T[0])     

        inorder(T[2],f)

# Programming project: provide implementations for the functions below,

#  i.e., replace all the pass statements in the functions below.

# Then add tests for these functions in the block # that starts "if __name__ == '__main__':"

def preorder(T,f):     

    pass

def postorder(T,f):     

    pass

def tree_height(T):     

    # Empty tree has height -1     

     pass

def balance(T):     

    # returns the height of the left subtree of T     

    # # minus the height of the right subtree of T     

    # i.e., the balance of the root of T     

    pass

def minBalance(T):     

    # returns the minimum value of balance(S) for all subtrees S of T     

    pass

def maxBalance(T):     

    # returns the maximum value of balance(S) for all subtrees S of T     

    pass

def is_avl(T):     

    # Returns True if T is an AVL tree, False otherwise     

    # # Hint: use minBalance(T) and maxBalance(T)    

    pass

# Add tests for the above seven functions below

if __name__ == '__main__':        

    K = ()       

    for x in ['Joe','Bob', 'Phil', 'Paul', 'Marc', 'Jean', 'Jerry', 'Alice', 'Anne']:         

        K = bst_insert(K,x)

    

    print(' Tree elements in sorted order ')     

    inorder(K,print_func_space)     

    print()

    

    print(' Print full tree ')     

    print_bintree(K)

    

    print(" Delete Bob and print tree ")     

    K = bst_delete(K,'Bob')     

    print_bintree(K)     

    print()

    

    print(" Print subtree at 'Phil' ")     

    print_bintree(bst_search(K,'Phil'))     

    print()         

    

    # TEST CODE FOR THE FUNCTIONS YOU IMPLEMENTED GOES BELOW:

Explanation / Answer

//basic operations for Binary Search Trees using

a tuple representation.//

//I have not changed your code. i have only given the functions code that you mentioned.//

def is_bintree(T):   

if type(T) is not tuple:   

return False   

if T == ():   

return True   

if len(T) != 3:   

return False   

if is_bintree(T[1]) and is_bintree(T[2]):   

return True   

return False

def bst_min(T):   

if T == ():   

return None   

if not T[1]:

return T[0]   

return bst_min(T[1])

def bst_max(T):   

if T == ():   

return None   

if not T[2]:

return T[0]   

return bst_max(T[2])

def is_bst(T):   

if not is_bintree(T):   

return False

if T == ():   

return True

if not is_bst(T[1]) or not is_bst(T[2]):

return False   

if T[1] == () and T[2] == ():   

return True

if T[2] == ():   

return bst_max(T[1]) < T[0]   

if T[1] == ():   

return T[0] < bst_min(T[2])   

return bst_max(T[1]) < T[0] < bst_min(T[2])   

def bst_search(T,x):   

if T == ():   

return T   

if T[0] == x:   

return T   

if x < T[0]:   

return bst_search(T[1],x)   

return bst_search(T[2],x)

def bst_insert(T,x):   

if T == ():   

return (x,(),())   

elif x < T[0]:   

return (T[0],bst_insert(T[1],x),T[2])

else:   

return (T[0],T[1],bst_insert(T[2],x))

def delete_min(T):   

if T == ():   

return T

if not T[1]:

return T[2]   

else:   

return (T[0],delete_min(T[1]),T[2])

def bst_delete(T,x):   

assert T, "deleting value not in tree"   

if x < T[0]:   

return (T[0],bst_delete(T[1],x),T[2])   

elif x > T[0]:   

return (T[0],T[1],bst_delete(T[2],x))   

else:   

T[0] == x   

if not T[1]:   

return T[2]   

elif not T[2]:   

return T[1]   

else:

return (bst_min(T[2]),T[1],delete_min(T[2]))

def print_bintree(T,indent=0):   

if not T:   

print('*')   

return   

else:   

print(T[0])   

print(' '*(indent + len(T[0])-1)+'---', end = '')   

print_bintree(T[1],indent+3)

print(' '*(indent + len(T[0])-1)+'---', end = '')   

print_bintree(T[2],indent+3)

def print_func_space(x):   

print(x,end=' ')

def inorder(T,f):   

if not is_bst(T):   

return   

if not T:   

return   

inorder(T[1],f)

f(T[0])   

inorder(T[2],f)

# Programming project: provide implementations for the functions below,

# i.e., replace all the pass statements in the functions below.

# Then add tests for these functions in the block # that starts "if __name__ == '__main__':"

def preorder(T,f):   

if not is_bst(T):   

return   

if not T:   

return   

f(T[0])

preorder(T[1],f)

preorder(T[2],f)

def postorder(T,f):   

if not is_bst(T):   

return   

if not T:   

return   

postorder(T[1],f)

postorder(T[2],f)

f(T[0])

def tree_height(T):

if T == ():   

return -1

else:

return (1+max(tree_height(T[1]),tree_height(T[2])))

# Empty tree has height -1   

def balance(T):

return ((tree_height(T[1]))-(tree_height(T[2])))

def minBalance(T):

return (min(balance(T[1]),balance(T[2])))

# returns the minimum value of balance(S) for all subtrees S of T   

def maxBalance(T):   

return (max(balance(T[1]),balance(T[2])))

# returns the maximum value of balance(S) for all subtrees S of T   

def is_avl(T):   

if (minBalance(T)< -1 and maxBalance(T)>1):

return False

else:

return True

# Returns True if T is an AVL tree, False otherwise   

# # Hint: use minBalance(T) and maxBalance(T)

# Add tests for the above seven functions below

if __name__ == '__main__':   

K = ()   

for x in ['Joe','Bob', 'Phil', 'Paul', 'Marc', 'Jean', 'Jerry', 'Alice', 'Anne']:   

K = bst_insert(K,x)

print(' Tree elements in sorted order ')   

inorder(K,print_func_space)   

print()

print(' Tree elements in pre order ')   

preorder(K,print_func_space)   

print()

print(' Tree elements in postorder ')   

postorder(K,print_func_space)   

print()

print(' Print full tree ')   

print_bintree(K)

print(" Delete Bob and print tree ")   

K = bst_delete(K,'Bob')   

print_bintree(K)   

print()

print(" Print subtree at 'Phil' ")   

print_bintree(bst_search(K,'Phil'))   

print()

ouput:

Tree elements in sorted order

Alice Anne Bob Jean Jerry Joe Marc Paul Phil

Tree elements in pre order

Joe Bob Alice Anne Jean Jerry Phil Paul Marc

Tree elements in postorder

Anne Alice Jerry Jean Bob Marc Paul Phil Joe

Print full tree

Joe

---Bob

---Alice

---*

---Anne

---*

---*

---Jean

---*

---Jerry

---*

---*

---Phil

---Paul

---Marc

---*

---*

---*

---*

Delete Bob and print tree

Joe

---Jean

---Alice

---*

---Anne

---*

---*

---Jerry

---*

---*

---Phil

---Paul

---Marc

---*

---*

---*

---*

Print subtree at 'Phil'

Phil

---Paul

---Marc

---*

---*

---*

---*