Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Prove the following logic rules from other ones. (The only rule you can\'t use i

ID: 3824800 • Letter: P

Question

Prove the following logic rules from other ones. (The only rule you can't use is the one you are trying to prove). Don't forget to prove both directions of doubleheadarrow rules. a. Double negation: P doubleheadarrow P b. Demorgan's Law: (A logicalor B) doubleheadarrow A logicaland B c. Associativity of V: X logicalor (Y logicalor Z) doubleheadarrow (X logicalor Y) logicalor Z d. Distribution/Factorization: (P logicaland Q) logicalor R doubleheadarrow (P logicalor R) logicaland (Q logicalor R) e. Modus ponens: (A logicaland (A rightarrow B) rightarrow B f. commutativity of V: (X logicalor Y) doubleheadarrow (Y logicalor X) g. Transitivity of rightarrow: ((P rightarrow Q) logicaland (Q rightarrow R)) rightarrow (P rightarrow R)

Explanation / Answer

A

B

A<->B

F

F

T

F

T

F

T

F

F

T

T

T

p

¬p

¬(¬p)

¬(¬p)<->p

T

F

T

T

F

T

F

T

¬(¬p)<->p is a tautology

So ¬(¬p)<->p

A

B

A V B

¬( A V B )

¬A ^ ¬B

F

F

T

T

F

T

T

T

F

T

T

F

T

F

F

T

T

F

F

T

T

F

F

T

T

T

F

F

T

F

F

T

¬( A V B )<-> ¬A ^ ¬Bis a tautology

So

c)X V (y V z) <-> (x V y) V z

x

y

z

y V z

X V y

X V (y V z)

(x V y) V z

X V (y V z) <-> (x V y) V z

F

F

F

F

F

F

F

T

F

F

T

T

F

T

T

T

F

T

F

T

T

T

T

T

F

T

T

T

T

T

T

T

T

F

F

F

T

T

T

T

T

F

T

T

T

T

T

T

T

T

F

T

T

T

T

T

T

T

T

T

T

T

T

T

X V (y V z) <-> (x V y) V z is a tautology

So X V (y V z) <-> (x V y) V z

D)

( p ^ q ) V r <-> (p V r ) ^ (q V r)

p

q

r

P ^ q

p V r

q V r

( p ^ q ) V r

(p V r ) ^ (q V r)

( p ^ q ) V r<->(p v r) ^ (q v r)

F

F

F

F

F

F

F

F

T

F

F

T

F

T

T

T

T

T

F

T

F

F

F

T

F

F

T

F

T

T

F

T

T

T

T

T

T

F

F

F

T

F

F

F

T

T

F

T

F

T

T

T

T

T

T

T

F

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

So ( p ^ q ) V r <-> (p V r ) ^ (q V r) is a tautology

So ( p ^ q ) V r <-> (p V r ) ^ (q V r)

e)

A ^ ( A -> B) < - > B

A

B

A -> B

A ^ ( A -> B)

A ^ ( A -> B) - > B

F

F

T

F

T

F

T

T

F

T

T

F

F

F

T

T

T

T

T

T

A ^ ( A -> B) < - > B is a tautology

So A ^ ( A -> B) < - > B

g) (x V y ) <-> ( y V x)

X

Y

X V y

Y V x

(x v y ) <-> (y v x)

F

F

F

F

T

F

T

T

T

T

T

F

T

T

T

T

T

T

T

T

(x V y ) <-> ( y V x) is a tautology

So ) (x V y ) <-> ( y V x)

A

B

A<->B

F

F

T

F

T

F

T

F

F

T

T

T

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote