Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Question 7 Assume there are four methods A, B, C, and D. If method A calls metho

ID: 3829696 • Letter: Q

Question

Question 7

Assume there are four methods A, B, C, and D. If method A calls method B, method B calls method C, method C calls method D, and method D calls method A, which of the following methods is indirectly recursive?

A

B

C

D

1 points   

Question 8

Using a recursive algorithm to solve the Tower of Hanoi problem, a computer that can generate one billion moves per second would take ____ years to solve the problem.

39

400

500

10,000

1 points   

Question 9

public static int exampleRecursion (int n)
{
    if (n == 0)
         return 0;
    else
         return exampleRecursion(n - 1) + n * n * n;
}

How many base cases are in the code in the accompanying figure?

zero

one

two

three

1 points   

Question 10

public static int func1(int m, int n)
{
    if (m == n || n == 1)
        return 1;
    else
         return func1(m - 1, n - 1) + n * func1(m - 1, n);
}

Given the code in the accompanying figure, which of the following method calls would result in the value 1 being returned?

func1(1, 0)

func1(1, 1)

func1(1, 2)

func1(2, 0)

1 points   

Question 11

____ is NOT an iterative control structure.

A while loop

A for loop

Recursion

A do...while loop

1 points   

Question 12

public static int exampleRecursion (int n)
{
    if (n == 0)
         return 0;
    else
         return exampleRecursion(n - 1) + n * n * n;
}

What is the limiting condition of the code in the accompanying figure?

n >= 0

n > 0

n > 1

n >= 1

1 points   

Question 13

public static int exampleRecursion (int n)
{
    if (n == 0)
         return 0;
    else
         return exampleRecursion(n - 1) + n * n * n;
}

What does the code in the accompanying figure do?

Returns the cube of the number n

Returns the sum of the cubes of the numbers, 0 to n

Returns three times the number n

Returns the next number in a Fibonacci sequence

1 points   

Question 14

What is the first step in the Tower of Hanoi recursive algorithm?

Move the top n disks from needle 1 to needle 2, using needle 3 as the intermediate needle.

Move disk number n from needle 1 to needle 3.

Move the top n - 1 disks from needle 2 to needle 3, using needle 1 as the intermediate needle.

Move the top n - 1 disks from needle 1 to needle 2, using needle 3 as the intermediate needle.

1 points   

Question 15

If you are building a mission control system, ____.

you should always use iteration

you should always use recursion

use the most efficient solution

use the solution that makes the most intuitive sense

1 points   

Question 16

Consider the following definition of a recursive method.

public static int recFunc(int num)
{
      if (num >= 10)
            return 10;
      else
            return num * recFunc(num + 1);
}

What is the output of the following statement?

System.out.println(recFunc(8));

8

72

720

None of these

1 points   

Question 17

public static int exampleRecursion (int n)
{
    if (n == 0)
         return 0;
    else
         return exampleRecursion(n - 1) + n * n * n;
}

What is the output of exampleRecursion(0)?

0

3

9

27

1 points   

Question 18

Consider the following definition of a recursive method.

public static int strange(int[] list, int first, int last)
{
    if (first == last)
         return list[first];
    else
         return list[first] + strange(list, first + 1, last);
}

Given the declaration

int[] beta = {2, 5, 8, 9, 13, 15, 18, 20, 23, 25};

What is the output of the following statement?

System.out.println(strange(beta, 4, 7));

27

33

55

66

1 points   

Question 19

public static int func2(int m, int n)
{
    if (n == 0)
        return 0;
    else
        return m + func2(m, n - 1);
}

What is the limiting condition of the code in the accompanying figure?

n >= 0

m > n

m >= 0

n > m

1 points   

Question 20

public static int func1(int m, int n)
{
    if (m == n || n == 1)
        return 1;
    else
         return func1(m - 1, n - 1) + n * func1(m - 1, n);
}

What precondition must exist in order to prevent the code in the accompanying figure from infinite recursion?

m >= 0 and n >= 0

m >= 0 and n >= 1

m >= 1 and n >= 0

m >= 1 and n >=

A

B

C

D

Explanation / Answer

Hi, I have answered last 4 Questions.

Please repost others in separate post.

Please let me know in case of any issue in last 4 questions.


Q20)

   We are calling func1 recursively with lower m and n:
              func1(m - 1, n - 1) + n * func1(m - 1, n)
       So, we should have check : m>=0 && n >= 1

   Ans: m >= 0 and n >= 1

Q19)
   We are calling func2 recursively with lower n:
               func2(m, n - 1)

   So, it should check : n >=0 instead of n == 0

   Ans: n >= 0

Q18)
   So, we are summing up the values in list in range : first to last:

           list[first] + strange(list, first + 1, last);

       So, {2, 5, 8, 9, 13, 15, 18, 20, 23, 25}
       and: (strange(beta, 4, 7))

   Ans: 13+ 15+ 18+ 20 = 66


Q17)
   exampleRecursion(0):
           As we have: n == 0 in base condition,it returns 0

   Ans: 0

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote