Select all the grammars below which correctly generate the language: L = {a^n ww
ID: 3846168 • Letter: S
Question
Select all the grammars below which correctly generate the language: L = {a^n ww^R c^n + 2 bb:w elementof {a, b}*, n greaterthanorequalto 0} Assume that the start variable is S. {S rightarrow Accbb A rightarrow aAc|B B rightarrow bBb|aBa|lambda {S rightarrow Abb A rightarrow aACC|B B rightarrow aBa|bBb|lambda {S rightarrow Abb A rightarrow aAc|Bcc B rightarrow aBa|bBb|lambda {S rightarrow Accbb A rightarrow aAc|bAb|aAa|lambda {S rightarrow aSc|A A rightarrow Bccbb B rightarrow aBa|bBb|lambda {S rightarrow Acbb A rightarrow aAc|Bc B rightarrow aBa|bBb|lambdaExplanation / Answer
A)
S->Accbb
A->aAc|B
B->aba|bBb|
Langauage generated by gramer:
B->aBa|bBb| generate { ,aa,bb,aabb,abba,baba,….} ==>{ wwr | w {a+b}* }
A->aAc|B {aBc,aaBcc,aaaBccc……}->anBcn->{an wwr cn n>0}
S->Accbb generates
when A=B= then s=ccbb it is in the form an wwr cn+2 bb and n=0 other wise
S->an wwr cn cc bb
->an wwr cn+2 bb where n>=0
So this is Answer
B)
S->Abb
A->aAcc|B
B->aba|bBb|
Langauage generated by gramer:
B->aBa|bBb| generate { ,aa,bb,aabb,abba,baba,….} ==>{ wwr | w {a+b}* }
A->aAcc|B generates grammer {aBcc,aaBcccc,aaaBcccccc,……….}
=>anwwrc2n where n>1
S->Abb generates anwwrc2nbb where n>=0
it is not an answer
C)
S->Abb
A->aAc|Bcc
B->aba|bBb|
Langauage generated by gramer:
B->aBa|bBb| generate { ,aa,bb,aabb,abba,baba,….} ==>{ wwr | w {a+b}* }
A->aAc|Bcc generates garmer like {aBccc,aaBcccc,aaaBccccc,……………..}
={anwwrcn+2 where n>1}
S->Abb generates grammer anwwrcn+2bb where n>1
SO it is not required grammar
D)
S->Accbb
A->aAc|bAb|aAa|
Let
A->aAc|bAb|aAa|
Can be written as
A->aAc|B
B->bBb|aBa|
B->aBa|bBb| generate { ,aa,bb,aabb,abba,baba,….} ==>{ wwr | w {a+b}* }
A->aAc|B generate { , aBc, aaBcc,aaaBccc………} => {anwwrcn where n>1}
So A->aAc|bAb|aAa| generates => {anwwrcn where n>=0}
S->Accbb genearates { anwwrcn+2 bb where n>=0}
So it is a answer
E)
S->aSc|A
A->Bccbb
B->bBb|aBa|
B->aBa|bBb| generate { ,aa,bb,aabb,abba,baba,….} ==>{ wwr | w {a+b}* }
Let
s-> a S c
->aAc (A->Bccbb)
-> aBccbbc (B-> )
->Accbbc
Accbbc is not in the given grammar because each string in required grammar ended with bb
F)
S->Acbb
A->aAc|Bc
B->bBb|aBa|
B->aBa|bBb| generate { ,aa,bb,aabb,abba,baba,….} ==>{ wwr | w {a+b}* }
A->aAc|Bc {c,aBcc,aaBccc,aaaBcccc……….}=>{ an wwrcn+1where n>=0}
S->Acbb generates grammar
an wwrcn+1cbb where n>=0
an wwrcn+2bb where n>=0
So it is also an answer
Answers: A,D,F
A)
S->Accbb
A->aAc|B
B->aba|bBb|
Langauage generated by gramer:
B->aBa|bBb| generate { ,aa,bb,aabb,abba,baba,….} ==>{ wwr | w {a+b}* }
A->aAc|B {aBc,aaBcc,aaaBccc……}->anBcn->{an wwr cn n>0}
S->Accbb generates
when A=B= then s=ccbb it is in the form an wwr cn+2 bb and n=0 other wise
S->an wwr cn cc bb
->an wwr cn+2 bb where n>=0
So this is Answer
B)
S->Abb
A->aAcc|B
B->aba|bBb|
Langauage generated by gramer:
B->aBa|bBb| generate { ,aa,bb,aabb,abba,baba,….} ==>{ wwr | w {a+b}* }
A->aAcc|B generates grammer {aBcc,aaBcccc,aaaBcccccc,……….}
=>anwwrc2n where n>1
S->Abb generates anwwrc2nbb where n>=0
it is not an answer
C)
S->Abb
A->aAc|Bcc
B->aba|bBb|
Langauage generated by gramer:
B->aBa|bBb| generate { ,aa,bb,aabb,abba,baba,….} ==>{ wwr | w {a+b}* }
A->aAc|Bcc generates garmer like {aBccc,aaBcccc,aaaBccccc,……………..}
={anwwrcn+2 where n>1}
S->Abb generates grammer anwwrcn+2bb where n>1
SO it is not required grammar
D)
S->Accbb
A->aAc|bAb|aAa|
Let
A->aAc|bAb|aAa|
Can be written as
A->aAc|B
B->bBb|aBa|
B->aBa|bBb| generate { ,aa,bb,aabb,abba,baba,….} ==>{ wwr | w {a+b}* }
A->aAc|B generate { , aBc, aaBcc,aaaBccc………} => {anwwrcn where n>1}
So A->aAc|bAb|aAa| generates => {anwwrcn where n>=0}
S->Accbb genearates { anwwrcn+2 bb where n>=0}
So it is a answer
E)
S->aSc|A
A->Bccbb
B->bBb|aBa|
B->aBa|bBb| generate { ,aa,bb,aabb,abba,baba,….} ==>{ wwr | w {a+b}* }
Let
s-> a S c
->aAc (A->Bccbb)
-> aBccbbc (B-> )
->Accbbc
Accbbc is not in the given grammar because each string in required grammar ended with bb
F)
S->Acbb
A->aAc|Bc
B->bBb|aBa|
B->aBa|bBb| generate { ,aa,bb,aabb,abba,baba,….} ==>{ wwr | w {a+b}* }
A->aAc|Bc {c,aBcc,aaBccc,aaaBcccc……….}=>{ an wwrcn+1where n>=0}
S->Acbb generates grammar
an wwrcn+1cbb where n>=0
an wwrcn+2bb where n>=0
So it is also an answer
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.