Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

C++ Programming. Please only answer if you can do the ENTIRE problem. DO NOT MAK

ID: 3853039 • Letter: C

Question

C++ Programming. Please only answer if you can do the ENTIRE problem. DO NOT MAKE YOUR OWN CPP FILES, VARIABLES, ETC. UPLOAD ALL OF THE EXACT .CPP AND .H FILES AS I HAVE THEM JUST COMPLETED. Reattach all 5 files I have below even if you didn't have to edit one. Program MUST compile and all these insructions followed in order for me to give a thumbs up.

To Do:

- using the linked approach implement the BST ADT, implement all the functions in the BSTree.cpp. (60 points)

- use recursive functions to traverse the tree - read the implementation notes on using helper functions.

- Programming Exercise 2 (20 points)

- Programming Exercise 3 (20 points)

test9.cpp:

//--------------------------------------------------------------------

//

// Laboratory 9 test9.cpp

//

// Test program for the operations in the Binary Search Tree ADT

//

//--------------------------------------------------------------------

#include <iostream>

using namespace std;

#include "BSTree.cpp"

#include "config.h"

void print_help();

//--------------------------------------------------------------------

// Declaration for the binary search tree data item class

//--------------------------------------------------------------------

class TestData

{

public:

void setKey ( int newKey )

{ keyField = newKey; } // Set the key

int getKey () const

{ return keyField; } // Returns the key

private:

int keyField; // Key for the data item

};

int main()

{

BSTree<TestData,int> testTree; // Test binary search tree

TestData testData; // Binary search tree data item

int inputKey; // User input key

char cmd; // Input command

print_help();

do

{

testTree.showStructure(); // Output tree

cout << endl << "Command: "; // Read command

cin >> cmd;

if ( cmd == '+' || cmd == '?' ||

   cmd == '-' || cmd == '<' )

   cin >> inputKey;

switch ( cmd )

{

case 'P' : case 'p' :

   print_help();

   break;

case '+' : // insert

   testData.setKey(inputKey);

   cout << "Insert : key = " << testData.getKey()

<< endl;

   testTree.insert(testData);

   break;

case '?' : // retrieve

   if ( testTree.retrieve(inputKey,testData) )

cout << "Retrieved : getKey = "

   << testData.getKey() << endl;

   else

cout << "Not found" << endl;

   break;

case '-' : // remove

   if ( testTree.remove(inputKey) )

cout << "Removed data item" << endl;

   else

cout << "Not found" << endl;

   break;

case 'K' : case 'k' : // writeKeys

   cout << "Keys:" << endl;

   testTree.writeKeys();

   break;

case 'C' : case 'c' : // clear

   cout << "Clear the tree" << endl;

   testTree.clear();

   break;

case 'E' : case 'e' : // empty

   if ( testTree.isEmpty() )

cout << "Tree is empty" << endl;

   else

cout << "Tree is NOT empty" << endl;

   break;

#if LAB9_TEST1

case 'G' : case 'g' : // Programming Exercise 2

   cout << "Tree nodes count = " << testTree.getCount() << endl;

   break;

#endif   // LAB9_TEST1

#if LAB9_TEST2

case 'H' : case 'h' : // Programming Exercise 2

   cout << "Tree height = " << testTree.getHeight() << endl;

   break;

#endif   // LAB9_TEST2

#if LAB9_TEST3

case '<' : // Programming Exercise 3

   cout << "Keys < " << inputKey << " : " << endl;

   testTree.writeLessThan(inputKey);

   cout << endl;

   break;

#endif   // LAB9_TEST3

case 'Q' : case 'q' : // Quit test program

   break;

default : // Invalid command

   cout << "Inactive or invalid command. 'P' prints help." << endl;

}

}

while ( cin && ( cmd != 'Q' ) && ( cmd != 'q' ) );

  

if ( !cin ) {

   cerr << "Error in console input. Exiting." << endl;

}

return 0;

}

//--------------------------------------------------------------------

void print_help() {

cout << endl << "Commands:" << endl;

cout << " P : [P]rint Help (displays this message)" << endl;

cout << " +key : Insert (or update) data item (use integers)" << endl;

cout << " ?key : Retrieve data item" << endl;

cout << " -key : Remove data item" << endl;

cout << " K : Write keys in ascending order" << endl;

cout << " C : Clear the tree" << endl;

cout << " E : Empty tree?" << endl;

cout << " G : Get count of nodes "

#if LAB9_TEST1

   << "(Active : "

#else

   << "(Inactive : "

#endif

   << "In-lab Exercise 2)" << endl;

cout << " H : Height "

#if LAB9_TEST2

   << "(Active : "

#else

   << "(Inactive : "

#endif

   << "In-lab Exercise 2)" << endl;

cout << " <key : Write keys that are < key "

#if LAB9_TEST3

   << "(Active : "

#else

   << "(Inactive : "

#endif

   << "In-lab Exercise 3)" << endl;

cout << " Q : Quit the test program" << endl;

cout << endl;

}

show9.cpp:

#include "BSTree.h"

//--------------------------------------------------------------------

//

// Laboratory 9 show9.cpp

//

// Linked implementation of the showStructure operation for the

// Binary Search Tree ADT

//

//--------------------------------------------------------------------

//--------------------------------------------------------------------

template < typename DataType, typename KeyType >

void BSTree<DataType,KeyType>:: showStructure () const

// Outputs the keys in a binary search tree. The tree is output

// rotated counterclockwise 90 degrees from its conventional

// orientation using a "reverse" inorder traversal. This operation is

// intended for testing and debugging purposes only.

{

if ( root == 0 )

   cout << "Empty tree" << endl;

else

{

   cout << endl;

   showHelper(root,1);

   cout << endl;

}

}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

template < typename DataType, typename KeyType >

void BSTree<DataType,KeyType>:: showHelper ( BSTreeNode *p,

   int level ) const

// Recursive helper for showStructure.

// Outputs the subtree whose root node is pointed to by p.

// Parameter level is the level of this node within the tree.

{

   int j; // Loop counter

   if ( p != 0 )

   {

showHelper(p->right,level+1); // Output right subtree

for ( j = 0 ; j < level ; j++ ) // Tab over to level

cout << " ";

cout << " " << p->dataItem.getKey(); // Output key

if ( ( p->left != 0 ) && // Output "connector"

   ( p->right != 0 ) )

   cout << "<";

else if ( p->right != 0 )

   cout << "/";

else if ( p->left != 0 )

   cout << "\";

cout << endl;

showHelper(p->left,level+1); // Output left subtree

}

}

BSTree.cpp:

#include "BSTree.h"

template <typename DataType, class KeyType>

BSTree<DataType, KeyType>::BSTreeNode::BSTreeNode ( const DataType &nodeDataItem, BSTreeNode *leftPtr, BSTreeNode *rightPtr )

{

}

template < typename DataType, class KeyType >

BSTree<DataType, KeyType>::BSTree ()

{

   root = NULL;

}

template < typename DataType, class KeyType >

BSTree<DataType, KeyType>::BSTree ( const BSTree<DataType,KeyType>& other )

{

}

template < typename DataType, class KeyType >

BSTree<DataType, KeyType>& BSTree<DataType, KeyType>:: operator= ( const BSTree<DataType,KeyType>& other )

{

}

template < typename DataType, class KeyType >

BSTree<DataType, KeyType>::~BSTree ()

{

}

template < typename DataType, class KeyType >

void BSTree<DataType, KeyType>::insert ( const DataType& newDataItem )

{

}

template < typename DataType, class KeyType >

bool BSTree<DataType, KeyType>::retrieve ( const KeyType& searchKey, DataType& searchDataItem ) const

{

   return false;

}

template < typename DataType, class KeyType >

bool BSTree<DataType, KeyType>::remove ( const KeyType& deleteKey )

{

   return false;

}

template < typename DataType, class KeyType >

void BSTree<DataType, KeyType>::writeKeys () const

{

}

template < typename DataType, class KeyType >

void BSTree<DataType, KeyType>::clear ()

{

}

template < typename DataType, class KeyType >

bool BSTree<DataType, KeyType>::isEmpty () const

{

   return false;

}

template < typename DataType, class KeyType >

int BSTree<DataType, KeyType>::getHeight () const

{

   return -1;

}

template < typename DataType, class KeyType >

int BSTree<DataType, KeyType>::getCount () const

{

   return -1;

}

template < typename DataType, class KeyType >

void BSTree<DataType, KeyType>::writeLessThan ( const KeyType& searchKey ) const

{

}

#include "show9.cpp"

config.h:

/**

* BSTree class (Lab 9) configuration file.

* Activate test 'N' by defining the corresponding LAB9_TESTN to have the value 1.

* Deactive test 'N' by setting the value to 0.

*/

#define LAB9_TEST1   0       // Programming Exercise 2: getCount

#define LAB9_TEST2   0       // Programming Exercise 2: getHeight

#define LAB9_TEST3   0       // Programming Exercise 3: writeLessThan

BSTree.h:

//--------------------------------------------------------------------

//

// Laboratory 9 BSTree.h

//

// Class declarations for the linked implementation of the Binary

// Search Tree ADT -- including the recursive helpers of the

// public member functions

//

//--------------------------------------------------------------------

#ifndef BSTREE_H

#define BSTREE_H

#include <stdexcept>

#include <iostream>

using namespace std;

template < typename DataType, class KeyType > // DataType : tree data item

class BSTree // KeyType : key field

{

public:

// Constructor

BSTree (); // Default constructor

BSTree ( const BSTree<DataType,KeyType>& other ); // Copy constructor

BSTree& operator= ( const BSTree<DataType,KeyType>& other );

                          // Overloaded assignment operator

// Destructor

~BSTree ();

// Binary search tree manipulation operations

void insert ( const DataType& newDataItem ); // Insert data item

bool retrieve ( const KeyType& searchKey, DataType& searchDataItem ) const;

// Retrieve data item

bool remove ( const KeyType& deleteKey ); // Remove data item

void writeKeys () const; // Output keys

void clear (); // Clear tree

// Binary search tree status operations

bool isEmpty () const; // Tree is empty

// !! isFull() has been retired. Not very useful in a linked structure.

// Output the tree structure -- used in testing/debugging

void showStructure () const;

// In-lab operations

int getHeight () const; // Height of tree

int getCount () const;              // Number of nodes in tree

void writeLessThan ( const KeyType& searchKey ) const; // Output keys < searchKey

protected:

class BSTreeNode // Inner class: facilitator for the BSTree class

{

public:

  

// Constructor

BSTreeNode ( const DataType &nodeDataItem, BSTreeNode *leftPtr, BSTreeNode *rightPtr );

// Data members

DataType dataItem; // Binary search tree data item

BSTreeNode *left, // Pointer to the left child

   *right; // Pointer to the right child

};

// Recursive helpers for the public member functions -- insert

// prototypes of these functions here.

void insertHelper ( BSTreeNode *&p, const DataType &newDataItem );

bool retrieveHelper ( BSTreeNode *p, const KeyType& searchKey, DataType &searchDataItem ) const;

bool removeHelper ( BSTreeNode *&p, const KeyType& deleteKey );

// cutRightmose used in one implementation of remove.

void cutRightmost ( BSTreeNode *&r, BSTreeNode *&delPtr );

void writeKeysHelper ( BSTreeNode *p ) const;

void clearHelper ( BSTreeNode *p );

void showHelper ( BSTreeNode *p, int level ) const;

int getHeightHelper ( BSTreeNode *p ) const;

int getCountHelper ( BSTreeNode *p ) const;

void writeLTHelper ( BSTreeNode *p, const KeyType& searchKey ) const;

void copyTree ( const BSTree<DataType,KeyType> &otherTree );

void copyTreeHelper ( BSTreeNode *&p, const BSTreeNode *otherPtr );

// Data member

BSTreeNode *root; // Pointer to the root node

};

#endif   // define BSTREE_H

Explanation / Answer

#include<iostream>
#include<conio.h>
#include<stdlib.h>
using namespace std;
# define max 10
typedef struct list
{
int data;
struct list *next;
}node_type;
node_type *ptr[max],*root[max],*temp[max];
class Dictionary
{
public:
int index;
Dictionary();
void insert(int);
void search(int);
void delete_ele(int);
};
Dictionary::Dictionary()
{
index=-1;
for(int i=0;i<max;i++)
{
root[i]=NULL;
ptr[i]=NULL;
temp[i]=NULL;
}
}
void Dictionary::insert(int key)
{
index=int(key%max);
ptr[index]=(node_type*)malloc(sizeof(node_type));
ptr[index]->data=key;
if(root[index]==NULL)
{
root[index]=ptr[index];
root[index]->next=NULL;
temp[index]=ptr[index];
}
else
{
temp[index]=root[index];
while(temp[index]->next!=NULL)
temp[index]=temp[index]->next;
temp[index]->next=ptr[index];
}
}
void Dictionary::search(int key)
{
int flag=0;
index=int(key%max);
temp[index]=root[index];
while(temp[index]!=NULL)
{
if(temp[index]->data==key)
{
cout<<" Search key is found!!";
flag=1;
break;
}
else temp[index]=temp[index]->next;
}
if (flag==0)
cout<<" search key not found.......";
}
void Dictionary::delete_ele(int key)
{
index=int(key%max);
temp[index]=root[index];
while(temp[index]->data!=key && temp[index]!=NULL)
{
ptr[index]=temp[index];
temp[index]=temp[index]->next;
}
ptr[index]->next=temp[index]->next;
cout<<" "<<temp[index]->data<<" has been deleted.";
temp[index]->data=-1;
temp[index]=NULL;
free(temp[index]);
}
main()
{
int val,ch,n,num;
char c;
Dictionary d;
do
{
cout<<" MENU: 1.Create";
cout<<" 2.Search for a value 3.Delete an value";
cout<<" Enter your choice:";
cin>>ch;
switch(ch)
{
case 1:cout<<" Enter the number of elements to be inserted:";
cin>>n;
cout<<" Enter the elements to be inserted:";
for(int i=0;i<n;i++)
{
cin>>num;
d.insert(num);
}
break;
case 2:cout<<" Enter the element to be searched:";
cin>>n;
d.search(n);
case 3:cout<<" Enter the element to be deleted:";
cin>>n;
d.delete_ele(n);
break;
default:cout<<" Invalid choice....";
}
cout<<" Enter y to continue......";
cin>>c;
}while(c=='y');
getch();
}

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote