I need to do the following in matlab : Animate your masterpiece by using the vie
ID: 3858255 • Letter: I
Question
I need to do the following in matlab:
Animate your masterpiece by using the view([azimuth, elevation]) command inside a for loop. Fix the elevation at 10 degrees, but use the for loop variable so the azimuth runs from 0 to 720, corresponding to two complete revolutions. Change it by 1 degree on each iteration. Use the following command inside your for loop to create a pause of 0.05 seconds between each frame of your animation
Here is the code I have up until:
%% Question 1
A= [1 1 1; 1 2 1; 1 3 1];
b=[1;2;3];
AugAB=[A,b];
sz=size(AugAB);
disp(sz);
sprintf('The size of the augmented matrix is: 3 x 4 %d ')
%% Question 2
RAM=rref(AugAB)
%% Question 3
row1 = RAM(1, :);
pivot_for_row1 = find(row1, 1);
row2 = RAM(2, :);
pivot_for_row2 = find(row2, 1);
row3 = RAM(3, :);
pivot_for_row3 = find(row3, 1);
%% Question 4
%{
The basic variables are: x1, x2
The free variable is: x3
The solutions can be written: x1=0+x3 ,x2=1 where x3 is free.
%}
%% Questions 5-6
clc, close all
figure
% Set up a grid for each 3D plot.
x = -5 : 1 : 5; % x will range from -5 to 5.
y = -5 : 1 : 5; % y will range from -5 to 5.
[X,Y] = meshgrid(x,y);
base = surf(X,Y,0*X + 0*Y); % Draw the xy plane
hold on
grid on
base.set('facealpha', 0.4); base.set('edgealpha', 0.15);
base.set('facecolor', 'green');
darkgreen = [0 0.5 0 ];
% Plot the coordinate axis in the background
L =6;
t=-L: 0.1 :L; % Scale
plot3(t, zeros(size(t)), zeros(size(t)), 'color', darkgreen, 'LineWidth', 3)
plot3( zeros(size(t)), t, zeros(size(t)), 'color', darkgreen, 'LineWidth', 3)
plot3( zeros(size(t)), zeros(size(t)), 1.5*t, 'color', darkgreen, 'LineWidth', 3)
set(gca, 'FontSize', 20)
% Add one reference marker at the tip of the positive x-axis.
plot3( L, 0, 0, 'bd', 'MarkerSize', 9, 'MarkerFaceColor', 'green')
view([120, 20])
% Students will add more code here.
xlabel('x');
ylabel('y');
zlabel('z')
title('Visualization of a System of Equations');
z = -5 : 0.01 : 5;
x=-z;
y=ones(size(z));
plot3(x, y, z, 'magenta', 'LineWidth', 4)
rotate3d on
view([100, 10])
axis equal
%% Questions 7-8
P1 = [3; 1; 3];
P2 = [3; 1; -3];
P3 = [-3; 1; -3];
P4 = [-3; 1; 3];
points = [P1 P2 P3 P4 P1]
x1=points(1,:);
y1=points(2,:);
z1=points(3,:);
plot3(x1,y1,z1,'g:','LineWidth',3)
X = P1
for X = points
disp(X)
if isequal( A*X , b) % Test if AX equals b
plot3(X(1), X(2), X(3), 'bo', 'MarkerSize', 16, 'MarkerFaceColor', 'green')
else
plot3(X(1), X(2), X(3), 'bo', 'MarkerSize', 16, 'MarkerFaceColor', 'red')
end
end
%% Question 9
% Set up a grid for each 3D plot.
x = -5 : 1 : 5; % x will range from -5 to 5.
y = -5 : 1 : 5; % y will range from -5 to 5.
[X,Y] = meshgrid(x,y);
% Shading methods are flat, faceted, and interp.
shading faceted
colormap cool % Try winter, summer, copper, hot, bone, cool, parula
base.set('facecolor', 'green'); % Set the xy-plane back to green.
% First plane
a=1; b=1; c=1; d=1;
Z=(d- a * X - b * Y)/c;
p1 = surf(X,Y,Z) % Draw the plane defined by the first equation.
p1.set('facealpha', 0.40) % Make the surface plot partially transparent.
% Add the second plane here using an alpha value of 0.1
%Second Phase
% Set up a grid for each 3D plot.
x = -5 : 1 : 5; % x will range from -5 to 5.
y = -5 : 1 : 5; % y will range from -5 to 5.
[X,Y] = meshgrid(x,y);
% Shading methods are flat, faceted, and interp.
shading faceted
colormap cool % Try winter, summer, copper, hot, bone, cool, parula
base.set('facecolor', 'green'); % Set the xy-plane back to green.
% First plane
a=1; b=1; c=1; d=1;
Z=(d- a * X - b * Y)/c;
p1 = surf(X,Y,Z) % Draw the plane defined by the first equation.
p1.set('facealpha', 0.40) % Make the surface plot partially transparent.
% Add the second plane here using an alpha value of 0.1
a=1; b=2; c=1; d=2;
Z=(d- a * X - b * Y)/c;
p1 = surf(X,Y,Z) % Draw the plane defined by the first equation.
p1.set('facealpha', 0.10)
Explanation / Answer
%% Question 1
A= [1 1 1; 1 2 1; 1 3 1];
b=[1;2;3];
AugAB=[A,b];
sz=size(AugAB);
disp(sz);
sprintf('The size of the augmented matrix is: 3 x 4 %d ')
%% Question 2
RAM=rref(AugAB)
%% Question 3
row1 = RAM(1, :);
pivot_for_row1 = find(row1, 1);
row2 = RAM(2, :);
pivot_for_row2 = find(row2, 1);
row3 = RAM(3, :);
pivot_for_row3 = find(row3, 1);
%% Question 4
%{
The basic variables are: x1, x2
The free variable is: x3
The solutions can be written: x1=0+x3 ,x2=1 where x3 is free.
%}
%% Questions 5-6
clc, close all
figure
% Set up a grid for each 3D plot.
x = -5 : 1 : 5; % x will range from -5 to 5.
y = -5 : 1 : 5; % y will range from -5 to 5.
[X,Y] = meshgrid(x,y);
base = surf(X,Y,0*X + 0*Y); % Draw the xy plane
hold on
grid on
base.set('facealpha', 0.4); base.set('edgealpha', 0.15);
base.set('facecolor', 'green');
darkgreen = [0 0.5 0 ];
% Plot the coordinate axis in the background
L =6;
t=-L: 0.1 :L; % Scale
plot3(t, zeros(size(t)), zeros(size(t)), 'color', darkgreen, 'LineWidth', 3)
plot3( zeros(size(t)), t, zeros(size(t)), 'color', darkgreen, 'LineWidth', 3)
plot3( zeros(size(t)), zeros(size(t)), 1.5*t, 'color', darkgreen, 'LineWidth', 3)
set(gca, 'FontSize', 20)
% Add one reference marker at the tip of the positive x-axis.
plot3( L, 0, 0, 'bd', 'MarkerSize', 9, 'MarkerFaceColor', 'green')
view([120, 20])
% Students will add more code here.
xlabel('x');
ylabel('y');
zlabel('z')
title('Visualization of a System of Equations');
z = -5 : 0.01 : 5;
x=-z;
y=ones(size(z));
plot3(x, y, z, 'magenta', 'LineWidth', 4)
rotate3d on
view([100, 10])
axis equal
%% Questions 7-8
P1 = [3; 1; 3];
P2 = [3; 1; -3];
P3 = [-3; 1; -3];
P4 = [-3; 1; 3];
points = [P1 P2 P3 P4 P1]
x1=points(1,:);
y1=points(2,:);
z1=points(3,:);
plot3(x1,y1,z1,'g:','LineWidth',3)
X = P1
for X = points
disp(X)
if isequal( A*X , b) % Test if AX equals b
plot3(X(1), X(2), X(3), 'bo', 'MarkerSize', 16, 'MarkerFaceColor', 'green')
else
plot3(X(1), X(2), X(3), 'bo', 'MarkerSize', 16, 'MarkerFaceColor', 'red')
end
end
%% Question 9
% Set up a grid for each 3D plot.
x = -5 : 1 : 5; % x will range from -5 to 5.
y = -5 : 1 : 5; % y will range from -5 to 5.
[X,Y] = meshgrid(x,y);
% Shading methods are flat, faceted, and interp.
shading faceted
colormap cool % Try winter, summer, copper, hot, bone, cool, parula
base.set('facecolor', 'green'); % Set the xy-plane back to green.
% First plane
a=1; b=1; c=1; d=1;
Z=(d- a * X - b * Y)/c;
p1 = surf(X,Y,Z) % Draw the plane defined by the first equation.
p1.set('facealpha', 0.40) % Make the surface plot partially transparent.
% Add the second plane here using an alpha value of 0.1
%Second Phase
% Set up a grid for each 3D plot.
x = -5 : 1 : 5; % x will range from -5 to 5.
y = -5 : 1 : 5; % y will range from -5 to 5.
[X,Y] = meshgrid(x,y);
% Shading methods are flat, faceted, and interp.
shading faceted
colormap cool % Try winter, summer, copper, hot, bone, cool, parula
base.set('facecolor', 'green'); % Set the xy-plane back to green.
% First plane
a=1; b=1; c=1; d=1;
Z=(d- a * X - b * Y)/c;
p1 = surf(X,Y,Z) % Draw the plane defined by the first equation.
p1.set('facealpha', 0.40) % Make the surface plot partially transparent.
% Add the second plane here using an alpha value of 0.1
a=1; b=2; c=1; d=2;
Z=(d- a * X - b * Y)/c;
p1 = surf(X,Y,Z) % Draw the plane defined by the first equation.
p1.set('facealpha', 0.10)
for i=0:720
view(i,10)
pause(.05)
end
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.