Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Question 2: [10 points] The impedance of a certain RLC electrical circuit is giv

ID: 3911560 • Letter: Q

Question

Question 2: [10 points] The impedance of a certain RLC electrical circuit is given by: where resistance R = 225 ohms, capacitance C = 0.6 × 10-6 F, and inductance L = 0.5 H Write a computer program that uses Bisection Method, and calculates the angular frequency ? that results in an impedance of Z= 75 ohms. Use bracket of 1 and 1000 Continue the iterations until ?? falls below the pre-specified criteria of, 0·1% Note: See figure 5.11 or slides for the pseudocode of Bisection Method Show the following results in the output for each iteration: ? ?)xf a),

Explanation / Answer

----------------------------------f.m--------------------------

function [x] = f(w)

    R = 225;

    C = 0.6 * ( 10 ^ -6 );

    L = 0.5;

    Z = 75;

    x = sqrt( ( 1 / ( R ^ 2 ) ) + ( ( w * C - ( 1 / ( w * L ) ) ) ^ 2 ) ) - ( 1 / Z );

end

--------------------------------------bisection.m-------------------------------

% calculate f(1)

f_1 = f(1);

% calculate f(1000)

f_1000 = f(1000);

fprintf('f(1) : %f f(1000) : %f ' , f_1 , f_1000);

% if root exists

if f_1 * f_1000 < 0

   

    % get the root between 0 and 1

    a = 1;

    b = 1000;

    % find root upto 0.1% error

    error = 0.1 / 100;

    % store the previous root

    pre = 0.0;

    % calculate the current root

    x = ( a + b ) / 2;

    % infinite loop

    while true

        % if the root is correct upto n decimal places

        if abs( x - pre ) <= error

           break;

        end

        % calculate the value of function

        f_x = f(x);

       

        if f(a) >= 0 && f(b) < 0

           

          % if the value of functon at x is positive

            % root lies in range [ a , x ]

            if f_x > 0

                a = x;

            % if the value of functon at x is negative

            % root lies in range [ x , b ]

            else

                b = x;

            end

           

        else

           

            % if the value of functon at x is negative

            % root lies in range [ x , b ]

            if f_x > 0

                b = x;

            % if the value of functon at x is positive

            % root lies in range [ a , x ]

            else

                a = x;

            end

           

        end

        % set the current root as the previous root

        pre = x;

        % calcualte the new root by calculating the mid value

        x = ( a + b ) / 2;

    end

    fprintf('Root lies at x = %f ' , x);

   

% if root doesn't exist

else

   

    fprintf('As the sign of f(0) and f(2) is same. SO, no root exists between [0 , 1] ');

   

end

Sample Output

f(1) : 1.986671
f(1000) : -0.008674

Root lies at x = 157.908326

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote