Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Write a program to perform the following in C++: 1)Implement Dijkstra’s Algorith

ID: 3919210 • Letter: W

Question

Write a program to perform the following in C++:

1)Implement Dijkstra’s Algorithm .

2)Read a graph data file. Each line contains weighted edge: “vertex, vertex, weight”

3)Using the implemented algorithm, find the shortest-paths tree from vertex M.

4)Report the shortest-paths tree from vertex M and distance to each other vertex.

graph.txt:

A,J,91
A,H,86
A,B,38
A,N,37
A,L,100
A,V,64
A,S,84
A,M,9
A,W,54
A,K,46
B,J,27
B,V,93
B,H,40
B,G,49
B,F,94
B,N,95
B,C,45
B,Z,42
B,L,15
C,Q,14
C,W,10
C,L,87
C,R,77
C,N,92
C,S,79
C,T,3
C,D,60
C,J,43
D,P,26
D,W,12
D,K,21
D,Q,5
D,V,75
D,T,59
D,J,2
D,R,11
F,J,63
F,X,72
F,L,88
F,G,51
F,V,61
F,P,39
F,M,69
F,W,65
G,N,76
G,X,13
G,Z,56
G,H,82
G,Q,32
G,W,20
G,V,18
H,Z,74
H,P,85
H,L,62
H,M,44
H,K,25
H,J,98
H,R,19
J,V,31
J,M,50
J,S,57
J,Q,17
J,T,22
J,P,68
K,T,67
K,L,81
K,M,55
K,P,52
K,S,83
K,X,41
L,R,36
L,N,30
L,T,53
L,S,23
L,Q,66
M,S,6
M,Q,29
M,N,71
M,R,8
M,T,96
N,T,16
N,R,78
N,Q,73
N,V,24
P,Z,28
P,W,48
P,Q,7
P,T,47
Q,W,99
Q,S,1
Q,Z,89
R,V,70
R,X,35
R,S,33
S,T,34
S,X,90
T,X,4
T,W,58
V,X,80
W,Z,97

Explanation / Answer

Dijkstra's algorithm allows to find the shortest path between any two vertices of a weighted graph.

//c++ code

#include <iostream>

#include <vector>

#define INT_MAX 10000000

using namespace std;

void DijkstrasTest();

int main()

{

DijkstrasTest();

return 0;

}

class Node;

class Edge;

void Dijkstras();

vector<Node*>* AdjacentRemainingNodes(Node* node);

Node* ExtractSmallest(vector<Node*>& nodes);

int Distance(Node* node1, Node* node2);

bool Contains(vector<Node*>& nodes, Node* node);

void PrintShortestRouteTo(Node* destination);

vector<Node*> nodes;

vector<Edge*> edges;

class Node

{

public:

Node(char id)

: id(id), previous(NULL), distanceFromStart(INT_MAX)

{

nodes.push_back(this);

}

public:

char id;

Node* previous;

int distanceFromStart;

};

class Edge

{

public:

Edge(Node* node1, Node* node2, int distance)

: node1(node1), node2(node2), distance(distance)

{

edges.push_back(this);

}

bool Connects(Node* node1, Node* node2)

{

return (

(node1 == this->node1 &&

node2 == this->node2) ||

(node1 == this->node2 &&

node2 == this->node1));

}

public:

Node* node1;

Node* node2;

int distance;

};

///////////////////

void DijkstrasTest()

{

Node* a = new Node('a');

Node* b = new Node('b');

Node* c = new Node('c');

Node* d = new Node('d');

Node* f = new Node('f');

Node* g = new Node('g');

Node* h = new Node('h');

Node* j = new Node('j');

Node* k = new Node('k');

Node* l = new Node('l');

Node* m = new Node('m');

Node* n = new Node('n');

Node* p = new Node('p');

Node* q = new Node('q');

Node* r = new Node('r');

Node* s = new Node('s');

Node* t = new Node('t');

Node* v = new Node('v');

Node* w = new Node('w');

Node* x = new Node('x');

Node* z = new Node('z');

Edge* e1 = new Edge(a, j, 91);

Edge* e2 = new Edge(a, h, 86);

Edge* e3 = new Edge(a, b, 38);

Edge* e4 = new Edge(a, n, 37);

Edge* e5 = new Edge(a, l, 100);

Edge* e6 = new Edge(a, v, 64);

Edge* e7 = new Edge(a, s, 84);

Edge* e8 = new Edge(a, m, 9);

Edge* e9 = new Edge(a, w, 54);

Edge* e10 = new Edge(a, k, 46);

Edge* e11 = new Edge(b, j, 27);

Edge* e12 = new Edge(b, v, 93);

Edge* e13 = new Edge(b, h, 40);

Edge* e14 = new Edge(b, g, 49);

Edge* e15 = new Edge(b, f, 94);

Edge* e16 = new Edge(b, n, 95);

Edge* e17 = new Edge(b, c, 45);

Edge* e18 = new Edge(b, z, 42);

Edge* e19 = new Edge(b, l, 15);

Edge* e20 = new Edge(c, q, 14);

Edge* e21 = new Edge(c, w, 10);

Edge* e22 = new Edge(c, l, 87);

Edge* e23 = new Edge(c, r, 77);

Edge* e24 = new Edge(c, n, 92);

Edge* e25 = new Edge(c, s, 79);

Edge* e26 = new Edge(c, t, 3);

Edge* e27 = new Edge(c, d, 60);

Edge* e28 = new Edge(c, j, 43);

Edge* e29 = new Edge(d, p, 26);

Edge* e30 = new Edge(d, w, 12);

Edge* e31 = new Edge(d, k, 21);

Edge* e32 = new Edge(d, q, 5);

Edge* e33 = new Edge(d, v, 75);

Edge* e34 = new Edge(d, t, 59);

Edge* e35 = new Edge(d, j, 2);

Edge* e36 = new Edge(d, r, 11);

Edge* e37 = new Edge(f, j, 63);

Edge* e38 = new Edge(f, x, 72);

Edge* e39 = new Edge(f, l, 88);

Edge* e40 = new Edge(f, g, 51);

Edge* e41 = new Edge(f, v, 61);

Edge* e42 = new Edge(f, p, 39);

Edge* e43 = new Edge(f, m, 69);

Edge* e44 = new Edge(f, w, 65);

Edge* e45 = new Edge(g, n, 76);

Edge* e46 = new Edge(g, x, 13);

Edge* e47 = new Edge(g, z, 56);

Edge* e48 = new Edge(g, h, 82);

Edge* e49 = new Edge(g, q, 32);

Edge* e50 = new Edge(g, w, 20);

Edge* e51 = new Edge(g, v, 18);

Edge* e52 = new Edge(h, z, 74);

Edge* e53 = new Edge(h, p, 85);

Edge* e54 = new Edge(h, l, 62);

Edge* e55 = new Edge(h, m, 44);

Edge* e56 = new Edge(h, k, 25);

Edge* e57 = new Edge(h, j, 98);

Edge* e58 = new Edge(h, r, 19);

Edge* e59 = new Edge(j, v, 31);

Edge* e60 = new Edge(j, m, 50);

Edge* e61 = new Edge(j, s, 57);

Edge* e62 = new Edge(j, q, 17);

Edge* e63 = new Edge(j, t, 22);

Edge* e64 = new Edge(j, p, 68);

Edge* e65 = new Edge(k, t, 67);

Edge* e66 = new Edge(k, l, 81);

Edge* e67 = new Edge(k, m, 55);

Edge* e68 = new Edge(k, p, 52);

Edge* e69 = new Edge(k, s, 83);

Edge* e70 = new Edge(k, x, 41);

Edge* e71 = new Edge(l, r, 36);

Edge* e72 = new Edge(l, n, 30);

Edge* e73 = new Edge(l, t, 53);

Edge* e74 = new Edge(l, s, 23);

Edge* e75 = new Edge(l, q, 66);

Edge* e76 = new Edge(m, s, 6);

Edge* e77 = new Edge(m, q, 29);

Edge* e78 = new Edge(m, n, 71);

Edge* e79 = new Edge(m, r, 8);

Edge* e80 = new Edge(m, t, 96);

Edge* e81 = new Edge(n, t, 16);

Edge* e82 = new Edge(n, r, 78);

Edge* e83 = new Edge(n, q, 73);

Edge* e84 = new Edge(n, v, 24);

Edge* e85 = new Edge(p, z, 28);

Edge* e86 = new Edge(p, w, 48);

Edge* e87 = new Edge(p, q, 7);

Edge* e88 = new Edge(p, t, 47);

Edge* e89 = new Edge(q, w, 99);

Edge* e90 = new Edge(q, s, 1);

Edge* e91 = new Edge(q, z,89);

Edge* e92 = new Edge(r, v, 70);

Edge* e93 = new Edge(r, x, 35);

Edge* e94 = new Edge(r, s, 33);

Edge* e95 = new Edge(s, t, 34);

Edge* e96 = new Edge(s, x, 90);

Edge* e97 = new Edge(t, x, 4);

Edge* e98 = new Edge(t, w, 58);

Edge* e99 = new Edge(v, x, 80);

Edge* e100 = new Edge(w, z, 97);

m->distanceFromStart = 0; // set start node

Dijkstras();

PrintShortestRouteTo(f);

}

///////////////////

void Dijkstras()

{

while (nodes.size() > 0)

{

Node* smallest = ExtractSmallest(nodes);

vector<Node*>* adjacentNodes =

AdjacentRemainingNodes(smallest);

const int size = adjacentNodes->size();

for (int i=0; i<size; ++i)

{

Node* adjacent = adjacentNodes->at(i);

int distance = Distance(smallest, adjacent) +

smallest->distanceFromStart;

if (distance < adjacent->distanceFromStart)

{

adjacent->distanceFromStart = distance;

adjacent->previous = smallest;

}

}

delete adjacentNodes;

}

}

// Find the node with the smallest distance,

// remove it, and return it.

Node* ExtractSmallest(vector<Node*>& nodes)

{

int size = nodes.size();

if (size == 0) return NULL;

int smallestPosition = 0;

Node* smallest = nodes.at(0);

for (int i=1; i<size; ++i)

{

Node* current = nodes.at(i);

if (current->distanceFromStart <

smallest->distanceFromStart)

{

smallest = current;

smallestPosition = i;

}

}

nodes.erase(nodes.begin() + smallestPosition);

return smallest;

}

// Return all nodes adjacent to 'node' which are still

// in the 'nodes' collection.

vector<Node*>* AdjacentRemainingNodes(Node* node)

{

vector<Node*>* adjacentNodes = new vector<Node*>();

const int size = edges.size();

for(int i=0; i<size; ++i)

{

Edge* edge = edges.at(i);

Node* adjacent = NULL;

if (edge->node1 == node)

{

adjacent = edge->node2;

}

else if (edge->node2 == node)

{

adjacent = edge->node1;

}

if (adjacent && Contains(nodes, adjacent))

{

adjacentNodes->push_back(adjacent);

}

}

return adjacentNodes;

}

// Return distance between two connected nodes

int Distance(Node* node1, Node* node2)

{

const int size = edges.size();

for(int i=0; i<size; ++i)

{

Edge* edge = edges.at(i);

if (edge->Connects(node1, node2))

{

return edge->distance;

}

}

return -1; // should never happen

}

// Does the 'nodes' vector contain 'node'

bool Contains(vector<Node*>& nodes, Node* node)

{

const int size = nodes.size();

for(int i=0; i<size; ++i)

{

if (node == nodes.at(i))

{

return true;

}

}

return false;

}

///////////////////

void PrintShortestRouteTo(Node* destination)

{

Node* previous = destination;

cout << "Distance from start: "

<< destination->distanceFromStart << endl;

while (previous)

{

cout << previous->id << " ";

previous = previous->previous;

}

cout << endl;

}

// these two not needed

vector<Edge*>* AdjacentEdges(vector<Edge*>& Edges, Node* node);

void RemoveEdge(vector<Edge*>& Edges, Edge* edge);

vector<Edge*>* AdjacentEdges(vector<Edge*>& edges, Node* node)

{

vector<Edge*>* adjacentEdges = new vector<Edge*>();

const int size = edges.size();

for(int i=0; i<size; ++i)

{

Edge* edge = edges.at(i);

if (edge->node1 == node)

{

cout << "adjacent: " << edge->node2->id << endl;

adjacentEdges->push_back(edge);

}

else if (edge->node2 == node)

{

cout << "adjacent: " << edge->node1->id << endl;

adjacentEdges->push_back(edge);

}

}

return adjacentEdges;

}

void RemoveEdge(vector<Edge*>& edges, Edge* edge)

{

vector<Edge*>::iterator it;

for (it=edges.begin(); it<edges.end(); ++it)

{

if (*it == edge)

{

edges.erase(it);

return;

}

}

}

output

Distance from start: 53 // from node m the shortest distance is 53   

f p q s m // shortest path from m is f-p-q-s

I SPENT MUCH TIME ON THIS PROGRAM. COMMENTS ARE WELCOME...DO LIKE IF U LIKE.

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote