Problem 1 . Arsenal Electronics is going to construct a new $1.2 billion semicon
ID: 469455 • Letter: P
Question
Problem 1.
Arsenal Electronics is going to construct a new $1.2 billion semiconductor plant and has selected four towns in the Midwest as potential sites. The important location factors and ratings for each town are as follows:
Scores (0 to 100)
Location Factor
Weight
Abbeton
Bayside
Cane Creek
Dunnville
Work ethics
0.18
80
90
70
75
Quality of life
0.16
75
85
95
90
Labor laws/unionization
0.12
90
60
60
70
Infrastructure
0.10
60
50
60
70
Education
0.08
80
90
85
95
Labor skill and education
0.07
75
65
70
80
Cost of living
0.06
70
80
85
75
Taxes
0.05
65
70
55
60
Incentive package
0.05
90
95
70
80
Government regulations
0.03
40
50
65
55
Environmental regulations
0.03
65
60
70
80
Transportation
0.03
90
80
95
80
Space for expansion
0.02
90
95
90
90
Urban proximity
0.02
60
90
70
80
Recommend a site based on these location factors and ratings.
Scores (0 to 100)
Location Factor
Weight
Abbeton
Bayside
Cane Creek
Dunnville
Work ethics
0.18
80
90
70
75
Quality of life
0.16
75
85
95
90
Labor laws/unionization
0.12
90
60
60
70
Infrastructure
0.10
60
50
60
70
Education
0.08
80
90
85
95
Labor skill and education
0.07
75
65
70
80
Cost of living
0.06
70
80
85
75
Taxes
0.05
65
70
55
60
Incentive package
0.05
90
95
70
80
Government regulations
0.03
40
50
65
55
Environmental regulations
0.03
65
60
70
80
Transportation
0.03
90
80
95
80
Space for expansion
0.02
90
95
90
90
Urban proximity
0.02
60
90
70
80
Explanation / Answer
We need to calculate the weighted average for each site.
The weighted score for Abbeton = (.18*80)+(.16*75)+(.12*90)+(.1*60)+(.08*80)+(.07*75)+(.06*70)+(.05*65)+(.05*90)(.03*40)+(.03*65)+(.03*90)+(.02*90)+(.02*60) = 75.65
The weighted score of Bayside = (.18*90)+(.16*85)+(.12*60)+(.1*50)+(.08*90)+(.07*65)+(.06*80)+(.05*70)+(.05*95)(.03*50)+(.03*60)+(.03*80)+(.02*95)+(.02*90) = 76.2
The weighted score of Canecreek = (.18*70)+(.16*95)+(.12*60)+(.1*60)+(.08*85)+(.07*70)+(.06*85)+(.05*55)+(.05*70)+(.03*65)+(.03*70)+(.03*95)+(.02*90)+(.02*70) = 74.15
The weighted score of Dunville = (.18*75)+(.16*90)+(.12*70)+(.1*70)+(.08*95)+(.07*80)+(.06*75)+(.05*60)+(.05*80)+(.03*55)+(.03*80)+(.03*80)+(.02*90)+(.02*80) = 77.85
Dunville has the highest score, so the preferred sit woulde Dunville.
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.