A diprotic acid, H2A, has acid dissociation constants of Ka1 = 1.56× 10–4 and Ka
ID: 542215 • Letter: A
Question
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 1.56× 10–4 and Ka2 = 3.21× 10–11. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below.
A diprotic acid, H2A, has acid dissociation constants of Kal = 1.56x 10-4 and Ka2-3.21x10-11. Calculate the pH and molar concentrations of H2A, HA-, and A2 at equilibrium for each of the solutions below (a) a 0.113 M solution of H2A [H,A] pH HA Number Number Number Number (b) a 0.113 M solution of NaHA pH HA Number Number Number Number (c) a 0.113 M solution of Na2A [H,A] HA Number Number Number NumberExplanation / Answer
a)
H2A -----------------> HA- + H+
0.113 0 0
0.113 - x x x
Ka1 = [HA-][H+] / [H2A]
1.56 x 10^-4 = x^2 / 0.113 - x
x =4 .12 x 10^-3
[H+] = 4.12 x 10^-3 M
pH = -log[H+] = -log ( 4.12 x 10^-3)
pH = 2.38
[H2A] = 0.186 - 4.12 x 10^-3 = 0.109
pH = 2.25
[H2A] = 0.109 M
[HA-] = 4.12 x 10^-3 M
[A2-] = Ka2 = 3.21 x 10^-11 M
b)
pH = 7.15
[H2A] = 5.13 x 10^-5 M
[HA-] = 0.113 M
[A2-] = 5.12 x 10^-5 M
c)
A2- + H2O -------------> HA- + OH-
0.113 0 0
0.113-x x x
Kb1 = x^2 / 0.113 - x
Kw / Ka2 = x^2 / 0.113 - x
3.12 x 10^-4 = x^2 / 0.113 - x
x = 5.78 x 10^-3
[A2-] = 0.113 - 5.78 x 10^-3 = 0.107 M
[A2-] = 0.107 M
[HA-] = 5.78 x 10^-3 M
pOH = -log (5.78 x 10^-3 ) = 2.24
pH = 11.76
H2A -------------> HA- + H+
[H2A] = [H+][HA-] / Ka1
= 1.74 x 10^-12 x 5.78 x 10^-3 / 1.56 x 10^-4
[H2A] = 6.44 x 10^-11
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.