Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

value 5.00 points 5 attempts left Check my work Be sure to answer all parts. Con

ID: 580871 • Letter: V

Question

value 5.00 points 5 attempts left Check my work Be sure to answer all parts. Consider the following energy levels of a hypothetical atom E4-1.91 x 10-19 E,-6.41 x 10-19 J E2-1.05 × 10-18 J E-1.45x 10-1s (o) What is the wavelength of the photon needed to excite an electron from E to E, x 10 m (b) What is the énergy (in joules) a photon must have in order to excite an electron from E to E? x 10 (e) When an electron drops from the E, level to the E, level, the atom is said to undergo emission. Calculate the wavelength of the photon emitted in this process. x10 m References

Explanation / Answer

a) What is the wavelength of the photon needed to excite an electron from E1 to E4?
Answer: Given; E1 = -1.45 x 10-18 J
               E4 = -1.91 x 10-19 J
             
Therefore, energy change from E1 to E4 is E = E4-E1

E = (-1.91 x 10-19 J) -(-1.45 x 10-18 J)
   = 1.259 x10-18 J
  
Wavelength = hc/E
           = (6.63x10-34 J.S)(3x108 m.S-1)/(1.259 x 10-18J)
           = 1.58 x 10-7 m
          
Hence, the wavelength of the photon is: 1.58 x 10-7 m

b) What is the energy (in joules) a photon must have in order to excite an electron from E2 to E3?

Answer: Given; E2 = -1.05 x 10-18 J
               E3 = -6.41 x 10-19 J
             
Therefore, energy change from E2 to E3 is E = E3-E2

E = (-6.41 x 10-19 J) -(-1.05 x 10-18 J)
   = 4.09 x10-19 J
  
Hence, the answer is: 4.09 x10-19 J

c) WHen electron drops from E3 level to E1 level the atom is said to undergo emission. Calculate the wavelength of the photon emitted in this process.

Answer: Given; E1 = -1.45 x 10-18 J
               E3 = -6.41 x 10-19 J
             
Therefore, energy change from E3 to E2 is E = E2-E3

E = (-1.45 x 10-18 J) - (-6.41 x 10-19 J)
   = - 8.09 x10-19 J

The negative sign indicates the emission of light, therefore;
the Wavelength = hc/E
           = (6.63x10-34 J.S)(3x108 m.S-1)/(8.09 x10-19 J)
           = 2.46 x 10-7 m
          
The wavelength of the emitted proton light = 2.46 x 10-7 m