Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

FOR PYTHON: Write a function countEvens () that takes a two-dimensional list of

ID: 641829 • Letter: F

Question

FOR PYTHON: Write a function countEvens() that takes a two-dimensional list of integers as a parameter and returns the number of elements in the list that are even. A number is even if it is evenly divisible by 2. If there are no even numbers in the list, then the function should return 0. The following shows several sample runs of the function:

Python 3.4.1 Shell File Edit Shell Debug Optionsindows Help >>>countEvens(I1, 4, 3], [12, 0, 7, 10, 3],[13]]) >>> countEvens ( L[25, 4, 1, 2, 3, 4, 5, [0, 50, 991]) >countEvens (1, 31 [5]] >> countEvens ) 2 Ln: 21 Col: 4

Explanation / Answer

def poly(lst, x): "Input: List(int); Output: int" res = 0 for n,b in enumerate(lst): res += b*x**n return res def countEvens(lst): "Input:List(int); Output: Int" evens = [] newList = [] counter = 0 for x in lst: newList = newList + x for y in newList: if y % 2 == 0: evens.append(y) for z in evens: counter = counter + 1 return counter def findMinRow(lst): "Input: List(int); Output: int" return min(range(len(lst)), key=lambda i: sum(lst[i])) def findMaxDiff(lst): "Input:list(int); Output: (int, int)" answer = [] index = max(range(len(lst)), key=lambda i: sum(lst[i])) holder = enumerate(max(x) - min(x) for x in lst) return max(x[::-1] for x in holder) return index # Problem number 5 I wrote 2 functions: Begin problem 5: def term(n): return 4 / (2.0 * n + 1) * (-1) ** n def approx_pi(z): "Input: Float; output: Float" ind = term(0) ind2 = term(0) + term(1) n = 2 while abs(ind - ind2) > z: ind = ind2 ind2 += term(n) n += 1 return ind2 # end of problem 5 ## ##>>> ##>>> countEvens([[1,4,3],[12,0,7,10],[13]]) ##4 ##>>> countEvens([[25, -4],[1,2,3,4,5],[0,50,99]]) ##5 ##>>> countEvens([[1,3], [5]]) ##0 ##>>> countEvens([[]]) ##0 ##>>> findMinRow([[3.99, -12.5, 8.61], [0], [-30.5,8]]) ##2 ##>>> findMinRow([[3.99, -12.5, 8.61], [0], [-30.5,8]]) ##2 ##>>> findMinRow([[1,2,3], [-100], [10,-30.5,8]]) ##1 ##>>> findMinRow([[10,20], [100,200], [13], [8,9,10],[10,-30.5,8]]) ##4 ##>>> findMinRow([[10,20], [100,200], [13], [8,7,6,5],[8,9,10]]) ##2 ##>>> findMinRow([[10,20], [100,200], [8,7,6,5], [13], [8,9,10]]) ##3 ##>>> ================================ RESTART ================================ ##>>> ##>>> findMaxDiff([[12,3,50,17], [10,5,9,100,31],[5,3,1]]) ##(95, 1) ##>>> findMaxDiff([[12,3,50,17],[10,5,9,1,31],[5,3,1]]) ##(47, 0) ##>>> findMaxDiff([[1], [2],[3]]) ##(0, 2) ## ##>>> approx_pi(0.5) ##3.3396825396825403 ##>>> approx_pi(0.5) ##3.3396825396825403 ##>>> approx_pi(0.05) ##3.1659792728432157 ##>>> approx_pi(0.005) ##3.144086415298761 ##>>> approx_pi(0.0000005) ##3.1415929035895926 ##>>> poly([1,2,1],2) ##9 ##>>> poly([1,0,1,0,1],2) ##21 ##>>> poly([1,0,1,0,1],3) ##91 ##>>>