ASAP Write pgms for these. Can all be in one program: #21, 22, 27, 28 ,29, 33 th
ID: 665526 • Letter: A
Question
ASAP Write pgms for these. Can all be in one program: #21, 22, 27, 28 ,29, 33
these are mini programs and here are the ones I have which are incorrect:, NONE of THESE are CORRECT!
#21
int digits(int x)
{
If (n==0)
Return 0;
Else
return 1+digit(x/10);
}
#22
#27
Void ReverseArray(ArrayType a, int first, int last)
{
If (first <= last)
{
Element tmp = a(last);
A(last) = a(first);
A(first) = tmp;
ReverseArray(a, first+1, last-1);
}
}
#28
Int sumArray(ArrayType a, int n)
{
Int sum =0 ;
For (int I=1, I <=n; i++)
{
Sum = sum + a(i)
}
Return sum;
}
#29
Int location (arrayType a, int first, int last, Element elm)
}
Int loc = 0;
For (int I = first; I <= last; i++)
If((i) == elm)
{
Loc = I;
Break;
}
}
Return loc;
}
#33
Int GCD(int a, int b)
{
If(a<0) a *= -1;
If(b<0) b *=1-;
If (a==0)
Return b;
Else if (b==0)
Return a;
Else {
Int rem = a%b;
Return GCD(b,rem);
}
}
Please help ASAP
RecursiveProblems.tiff - Windows Photo Viewer File Print E-mail Burn Open write recursive definitions of the functions whose prototypes are given in Exercises 27-29 27. void reverseArray (ArrayType a, int first, int last); /* Reverse the contents of alfirst], ..., a[last] 28, int surray(ArrayType a, int n); Return the sum of a[0], ..., a[n 1] * 29. int location(ArrayType a, int first, int last, Element elm); /* Return the location of elm in a[first], ..., a[last]. If not found, return 0.*/ 30. Using the basic string operations length, concatenate, copy, and find (see Section 5.2), develop a recursive algorithm for reversing a string 31. Proceed as in Exercise 30, but develop a nonrecursive algorithm 32. Write a recursive function that implements the algorithm in this section for determining if a number is a palindrome. 33. The greatest common divisor of two integers a and b, GCD(a, b), not both of which are zero, is the largest positive integer that divides both a and b. The Euclidean algorithm for finding this greatest common divisor of a and b is as fol lows: Divide a by b to obtain the integer quotient q and the remainder r,so that a tions f this bq + r (if b = 0, GCD(a, b) = a). Then GCD(a, b) = GCD(b, r). Replace a with b and b with r and repeat this procedure. Because the remainders are decreasing, eventually a remainder of 0 will result. The last nonzero remainder is GCD(a, b) For example, ative 1260 198-6+72 198 : 72-2 + 54 72 = 54-1 + 18 54-18 . 3 +0 GCD(1260, 198) GCD( 198, 72) = GCD(72, 54) ts in GCD(54, 18) 23 (Note: If either a or b is negative, replace them with their absolute values in this Page 4 of 4 5:59 PM 7/22/2015Explanation / Answer
Note: Modifications highlight with bold.
21)
int digits(int x)
{
If (n==0)
return 0;
else
return 1+digits(x/10); // letter 's' missing in function name
}
27)
void ReverseArray(ArrayType a, int first, int last)
{
while(first <= last)
{
int tmp = a(last);
a(last) = a(first);
a(first) = tmp;
ReverseArray(a, first+1, last-1);
}
}
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.