An aqueous solution contains 0.162 M hydrosulfuric acid and 0.171 M hydroiodic a
ID: 712784 • Letter: A
Question
An aqueous solution contains 0.162 M hydrosulfuric acid and 0.171 M hydroiodic acid.
Calculate the sulfide ion concentration in this solution.
[S2-] = mol/L.
Acid/Base Ionization Constants at 25 oC
Acid
Formula
Ka1
Ka2
Ka3
Acid/Base Ionization Constants at 25 oC
Acid
Formula
Ka1
Ka2
Ka3
Acetic acid
CH3COOH
1.8×10-5
Acetylsalicylic acid (aspirin)
HC9H7O4
3.0×10-4
Aluminum ion
Al(H2O)43+
1.2×10-5
Arsenic acid
H3AsO4
2.5×10-4
5.6×10-8
3.0×10-13
Ascorbic acid
H2C6H6O6
7.9×10-5
1.6×10-12
Benzoic acid
C6H5COOH
6.3×10-5
Carbonic acid
H2CO3
4.2×10-7
4.8×10-11
Ferric ion
Fe(H2O)63+
4.0×10-3
Formic acid
HCOOH
1.8×10-4
Hydrocyanic acid
HCN
4.0×10-10
Hydrofluoric acid
HF
7.2×10-4
Hydrogen peroxide
H2O2
2.4×10-12
Hydrosulfuric acid
H2S
1.0×10-7
1.0×10-19
Hypochlorous acid
HClO
3.5×10-8
Nitrous acid
HNO2
4.5×10-4
Oxalic acid
H2C2O4
5.9×10-2
6.4×10-5
Phenol
C6H5OH
1.0×10-10
Phosphoric acid
H3PO4
7.5×10-3
6.2×10-8
3.6×10-13
Sulfuric acid
H2SO4
very large
1.2×10-2
Sulfurous acid
H2SO3
1.7×10-2
6.4×10-8
Zinc ion
Zn(H2O)42+
2.5×10-10
Base
Formula
Kb
Ammonia
NH3
1.8×10-5
Aniline
C6H5NH2
7.4×10-10
Caffeine
C8H10N4O2
4.1×10-4
Codeine
C18H21O3N
8.9×10-7
Diethylamine
(C2H5)2NH
6.9×10-4
Dimethylamine
(CH3)2NH
5.9×10-4
Ethylamine
C2H5NH2
4.3×10-4
Hydroxylamine
NH2OH
9.1×10-9
Isoquinoline
C9H7N
2.5×10-9
Methylamine
CH3NH2
4.2×10-4
Morphine
C17H19O3N
7.4×10-7
Piperidine
C5H11N
1.3×10-3
Pyridine
C5H5N
1.5×10-9
Quinoline
C9H7N
6.3×10-10
Triethanolamine
C6H15O3N
5.8×10-7
Triethylamine
(C2H5)3N
5.2×10-4
Trimethylamine
(CH3)3N
6.3×10-5
Urea
N2H4CO
1.5×10-14
Acid/Base Ionization Constants at 25 oC
Acid
Formula
Ka1
Ka2
Ka3
Acid/Base Ionization Constants at 25 oC
Acid
Formula
Ka1
Ka2
Ka3
Acetic acid
CH3COOH
1.8×10-5
Acetylsalicylic acid (aspirin)
HC9H7O4
3.0×10-4
Aluminum ion
Al(H2O)43+
1.2×10-5
Arsenic acid
H3AsO4
2.5×10-4
5.6×10-8
3.0×10-13
Ascorbic acid
H2C6H6O6
7.9×10-5
1.6×10-12
Benzoic acid
C6H5COOH
6.3×10-5
Carbonic acid
H2CO3
4.2×10-7
4.8×10-11
Ferric ion
Fe(H2O)63+
4.0×10-3
Formic acid
HCOOH
1.8×10-4
Hydrocyanic acid
HCN
4.0×10-10
Hydrofluoric acid
HF
7.2×10-4
Hydrogen peroxide
H2O2
2.4×10-12
Hydrosulfuric acid
H2S
1.0×10-7
1.0×10-19
Hypochlorous acid
HClO
3.5×10-8
Nitrous acid
HNO2
4.5×10-4
Oxalic acid
H2C2O4
5.9×10-2
6.4×10-5
Phenol
C6H5OH
1.0×10-10
Phosphoric acid
H3PO4
7.5×10-3
6.2×10-8
3.6×10-13
Sulfuric acid
H2SO4
very large
1.2×10-2
Sulfurous acid
H2SO3
1.7×10-2
6.4×10-8
Zinc ion
Zn(H2O)42+
2.5×10-10
Explanation / Answer
The solution contains two acids: 0.162M Hydrosulfuric acid (H2S) and 0.171M Hydroiodicacid (HI).
Hydrosulfuric acid (H2S), being diprotic acid has two steps of dissociation:
H2S -----> HS- + H+ This being the first step of dissociation,
Ka1 = {[HS-][H+]}/[H2S] --------- 1
HS- -----> S2- + H+ This being the second step of dissociation,
Ka2 = {[S2-][H+]}/[HS-] --------- 2
We also have Hydroiodic acid, HI in the solution. Since HI is a stong acid, it would completely dissociate in the following form:
HI --------> H+ + I- ----------- 3
Due to common ion effect, dissociatoion of H2S is depressed and the only H+ ion concentration in solution is from HI.
Now going back to equation 1:
Ka1 = 1.0 X 10-7 (from the table)
[H+] = 0.171 M same as concentration of HI
[H2S] = 0.162 M, given.
Rearranging equation 1 and substituting these values, we can calulate [HS-]
[HS-] = Ka1[H2S]/[H+] = (1.0 X 10-7)(0.162)/(0.171) = 0.95 X 10-7 M
Rearranging equation 2 and substituting for [HS-] and Ka2 we can calulate [S2-]
[S2-] = Ka2[HS-]/[H+] = (1.0 X 10-19)(0.95 X 10-7)/(0.171) = 5.5 X 10-26 M
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.