Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Chymotrypsin and trypsin are both serine proteases that contain the three conser

ID: 74776 • Letter: C

Question

Chymotrypsin and trypsin are both serine proteases that contain the three conserved residues known as the "catalytic triad". They are distinguished by their different substrate selectivity. What kind of reaction do these enzymes catalyze, and what is their respective selectivity? Suggest and draw a complete mechanism of action for trypsin, including a suitable substrate molecule, all steps and intermediates, all the involved residues from the enzyme active site, and arrows to indicate how electron pairs move during the reaction

Explanation / Answer

A)

Enzyme catalysis is the increase in the rate of a chemical reaction by the active site of a protein. The protein catalyst (enzyme) may be part of a multi-subunit complex, and/or may transiently or permanently associate with a Cofactor (e.g. adenosine triphosphate). Catalysis of biochemical reactions in the cell is vital due to the very low reaction rates of the uncatalysed reactions. A key driver of protein evolution is the optimization of such catalytic activities via protein dynamics.[1]

The mechanism of enzyme catalysis is similar in principle to other types of chemical catalysis. By providing an alternative reaction route the enzyme reduces the energy required to reach the highest energy transition state of the reaction. The reduction of activation energy (Ea) increases the amount of reactant molecules that achieve a sufficient level of energy, such that they reach the activation energy and form the product. As with other catalysts, the enzyme is not consumed during the reaction (as a substrate is) but is recycled such that a single enzyme performs many rounds of catalysis.

The favored model for the enzyme-substrate interaction is the induced fit model.[2] This model proposes that the initial interaction between enzyme and substrate is relatively weak, but that these weak interactions rapidly induce conformational changes in the enzyme that strengthen binding.

The advantages of the induced fit mechanism arise due to the stabilizing effect of strong enzyme binding. There are two different mechanisms of substrate binding: uniform binding, which has strong substrate binding, and differential binding, which has strong transition state binding. The stabilizing effect of uniform binding increases both substrate and transition state binding affinity, while differential binding increases only transition state binding affinity. Both are used by enzymes and have been evolutionarily chosen to minimize the activation energy of the reaction.[citation needed] Enzymes that are saturated, that is, have a high affinity substrate binding, require differential binding to reduce the energy of activation, whereas small substrate unbound enzymes may use either differential or uniform binding.

These effects have led to most proteins using the differential binding mechanism to reduce the energy of activation, so most substrates have high affinity for the enzyme while in the transition state. Differential binding is carried out by the induced fit mechanism - the substrate first binds weakly, then the enzyme changes conformation increasing the affinity to the transition state and stabilizing it, so reducing the activation energy to reach it.

It is important to clarify, however, that the induced fit concept cannot be used to rationalize catalysis. That is, the chemical catalysis is defined as the reduction of Ea‡ (when the system is already in the ES‡) relative to Ea‡ in the uncatalyzed reaction in water (without the enzyme). The induced fit only suggests that the barrier is lower in the closed form of the enzyme but does not tell us what the reason for the barrier reduction is.

B) Function

In the duodenum, trypsin catalyzes the hydrolysis of peptide bonds, breaking down proteins into smaller peptides. The peptide products are then further hydrolyzed into amino acids via other proteases, rendering them available for absorption into the blood stream. Tryptic digestion is a necessary step in protein absorption as proteins are generally too large to be absorbed through the lining of the small intestine.

Trypsin is produced as the inactive zymogen trypsinogen in the pancreas. When the pancreas is stimulated by cholecystokinin, it is then secreted into the first part of the small intestine (the duodenum) via the pancreatic duct. Once in the small intestine, the enzyme enteropeptidase activates trypsinogen into trypsin by proteolytic cleavage. Auto catalysis can happen with trypsin using trypsinogen as the substrate. This activation mechanism is common for most serine proteases, and serves to prevent autodegradation of the pancreas.

Mechanism

The enzymatic mechanism is similar to that of other serine proteases. These enzymes contain a catalytic triad consisting of histidine-57, aspartate-102, and serine-195. These three residues form a charge relay that increases nucleophilicity of the active site serine. This is achieved by modifying the electrostatic environment of the serine. The enzymatic reaction that trypsin catalyzes is thermodynamically favorable but requires significant activation energy (it is "kinetically unfavorable"). In addition, trypsin contains an "oxyanion hole" formed by the backbone amide hydrogen atoms of Gly-193 and Ser-195, which serves to stabilize the developing negative charge on the carbonyl oxygen atom of the cleaved amides.

The aspartate residue (Asp 189) located in the catalytic pocket (S1) of trypsin is responsible for attracting and stabilizing positively charged lysine and/or arginine, and is, thus, responsible for the specificity of the enzyme. This means that trypsin predominantly cleaves proteins at the carboxyl side (or "C-terminal side") of the amino acids lysine and arginine except when either is bound to a C-terminal proline,[5] although large-scale mass spectrometry data suggest cleavage occurs even with proline. Trypsin is considered an endopeptidase, i.e., the cleavage occurs within the polypeptide chain rather than at the terminal amino acids located at the ends of polypeptides.

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote