The legendrian operator is given as \\(\\Lambda^{2} = \\frac{1}{sin\\theta}\\fra
ID: 822152 • Letter: T
Question
The legendrian operator is given as
(Lambda^{2} = rac{1}{sin heta}rac{partial}{partial heta}(sin hetarac{partial}{partial heta}) + rac{1}{sin^{2} heta}rac{partial^{2}}{partial phi^{2}})
One eigenfunction of the legendrian operator is given as (Y_{2,+2}( heta,phi) = sqrt{rac{15}{32pi}}*sin^{2} heta*e^{+2iphi})
Write the eigenvalue eqation (which should just be the Schrodinger Equation without the h bar squared term) and calculate the corresponding eigenvalue. You will need to use differentiation.
Explanation / Answer
Eigenvalue Equation:
lambda^2 (Y 2,+2) = E * (Y 2,+2)
Here, lambda ^2 = legendrian operator, E = eigenvalue
Now, lambda ^ 2 (Y 2,+2) =
lambda^2 ( sqrt(15/32pi) * sin^2(theta) * exp(2i*phi))
= 1/sin(theta) * del/del(theta) ( sqrt(15/32pi) *exp(2i*phi) * 2 (sin(theta))^2*cos(theta)) + sqrt(15/32pi) * (-4)exp(2i*phi)
= sqrt(15/32pi) * exp(2i*phi) * [ 4(cos(theta))^2 - 2(sin(theta))^2 -4]
= sqrt(15/32pi) * exp(2i*phi) * [ -6 (sin(theta))^2]
= -6 * (Y 2,+2)
So Eigenvalue E = -6
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.