682 Chapter 13 | Chemical Kinetics 13.98 The conversion of cyclopropane, an anes
ID: 944253 • Letter: 6
Question
682 Chapter 13 | Chemical Kinetics 13.98 The conversion of cyclopropane, an anesthetic, to propyl- 3.99 h ene (see Problem 13.68) has a rate constant k = 1.3 × 10-6 s-1 at 673 Kand1.1 × 10-5s-1 at 703 K. What is the activation energy in kJ/mol? Use the data given at 703 K to calculate the frequency factor, A, for this reac 13.1 tion. What is the rate constant for the reaction at 350 °C? 3.99 The decomposition of N2O, has an activation energy of 103 kJ/mol and a frequency factor of 4.3 × 1013 s-1 What is the rate constant for this decomposition at (a) 25 °C and (b) 373 K? .100 At 35 °C, the rate constant for the reaction 13.10 121 22 11 sucroseExplanation / Answer
Answer - We are given, T1 = 673 K , T2 =703 K
k1 = 1.3*10-6 s-1 , k2 = 1.1*10-5 s-1
Ea = ?
The intergraded Arrhenius equation
ln k1/k2 = Ea / R *(1/T2-1/T1)
ln 1.3*10-6 / 1.1*10-5 = Ea/ 8.314 J/mol.K * (1/703 – 1/673 K)
-2.13 = Ea/ 8.314 J/mol.K * -6.34*10-5
So, Ea = -2.90 * 8.314 J/mol.K / -6.34*10-5
= 2.80*105 J/mol
= 280 kJ/mol
Now pre-exponential factor A for this reaction
T = 703 K , k = 1.1*10-5 s-1
Ea = 2.80*105 J. mol-1
We know Arrhenius equation
k = Ae-Ea/RT
1.1*10-5 s-1 = A * e-(280000 J. mol-1/8.314 *703)
1.1*10-5 s-1 = A * 1.56*10-21
So, A = 1.13*10-5 s-1 / 3.14*10-5
= 7.03*1015 s-1
Now we are given, T1 = 673 K , T2 = 350+273.15 = 623.15 K
k1 = 1.3*10-6 s-1 , k2 = ?
Ea = 2.80*105 J/mol
The intergraded Arrhenius equation
ln k1/k2 = Ea / R *(1/T2-1/T1)
ln 1.3*10-6 / k2 = 2.80*105 J. mol-1 / 8.314 J/mol.K * (1/623.15 – 1/673)
ln 1.3*10-6 / k2 = 0.00569
so taking anitln from both side
3.27*10-6 / k2 = 1.0057
So, k2 = 1.3*10-6 / 1.0057
= 1.29*10-6 s-1
13.99 ) We are given, Ea = 103 kJ/*mol
A = 4.3*1013 s-1
a)T = 25+273 = 298
We know Arrhenius equation
k = Ae-Ea/RT
k = 4.3*1013 s-1* e-(103000J. mol-1/8.314 *298)
k = 3.8*10-5 s-1
b)T = 373
We know Arrhenius equation
k = Ae-Ea/RT
k = 4.3*1013 s-1* e-(103000J. mol-1/8.314 *373)
k = 0.162 s-1
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.