M, a solid cylinder (M = 2.03 kg, R = 0.111 m) pivots on a thin, fixed, friction
ID: 1346892 • Letter: M
Question
M, a solid cylinder (M = 2.03 kg, R = 0.111 m) pivots on a thin, fixed, frictionless bearing. A string wrapped around the cylinder pulls downward with a force F which equals the weight of a 0.590 kg mass, i.e., F = 5.788 N. Calculate the angular acceleration of the cylinder. If instead of the force F an actual mass m = 0.590 kg is hung from the string, find the angular acceleration of the cylinder. How far does m travel downward between 0.690 s and 0.890 s after the motion begins? The cylinder is changed to one with the same mass and radius, but a different moment of inertia. Starting from rest, the mass now moves a distance 0.318 m in a time of 0.470 s. Find I_cm of the new cylinder.Explanation / Answer
mass M=2.03 kg,
radius R=0.111 m
force =weight =0.59*9.8=5.788 N
a)
let,
angular acceleration is alpa
torque =I*alpa
R*F*sin(theta)=I*alpa
R*F*sin(90)=(1/2)*(M*R^2)*alpa
R*F=(1/2)*(M*R^2)*alpa
alpa=2*F/M*R
alpa=2*5.788/(2.03*0.111)
alpa=51.373 rad/sec^2
b)
now, mass m=0.59 kg
tension T=m*g-m*a
and
a=R*alpa
now,
Torque =I*alpa
R*T=1/2*M*R^2*alpa
===>
alpa=2*T/M*R
alpa=2*(m*g-m*alpa*R)/M*R
===>
alpa=2*m*g/(R(M+2m)
alpa=(2*0.59*9.8)/(0.111(2.03+2*0.59)
======>
alpa=32.455 rad/sec^2
c)
let,
t1=0.69 sec and t2=0.89 sec
distance travelled,
s=1/2*a*(t2^2-t1^2)
s=1/2*(R*alpa)*(t2^2-t1^2)
s=1/2*0.111*32.455*(0.89^2-0.69^2)
s=0.57 m
d)
distance s=0.318 m
time t=0.47 sec
now again,
torque,T*R=I*alpa
T*R=I*(a/R)
I=T*R^2/a
here,
s=1/2*a*t^2
0.318=1/2*a*0.47^2
===> a=2.88 m/sec^2
T=m*g-m*a
T=(0.59*9.8)-(0.59*2.88) =4.083 N
now,
I=T*R^2/a
I=4.083*0.111^2/2.88
I=0.0175 kg.m^2
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.