The following four problems are about the following situation: A transition for
ID: 1399365 • Letter: T
Question
The following four problems are about the following situation: A transition for an electron in the Bohr Hydrogen atom will be given. You determine what energy/frequency/wavelength photon is emitted.
1) n=3 to n=1
a) 8.1 eV
b) 9.1 eV
c) 10.1 eV
d) 11.1 eV
e) 12.1 eV
2) n=6 to n=1
a) 1.12 x 10-18 J
b) 2.12 x 10-18 J
c) 3.12 x 10-18 J
d) 4.12 x 10-18 J
e) 5.12 x 10-18 J
3) n=4 to n=2
a) 186 nm
b) 286 nm
c) 386 nm
d) 486 nm
e) 586 nm
4) n=10 to n=3
a) 1.11 x 1014 Hz
b) 2.22 x 1014 Hz
c) 3.33 x 1014 Hz
d) 4.44 x 1014 Hz
e) 5.55 x 1014 Hz
Explanation / Answer
1) energy in nth orbit is En = -13.6 /n^2
in n = 3 state
E3 = -13.6/3^2 = -1.51eV
in n= 1 state
E1 = -13.6/1 = -13.6 eV
energy emitted is E3-E1 = -1.51+13.6 = 12.1eV
So correct option is e) 12.1 eV
----------------------------------------------------------------------------------
2) n=6 to n=1
in n= 6
E6 = -13.6/6^2 =-0.377 eV
E1 = -13.6 eV
E6-E1 = -0.377+13.6 = 13.223 eV = 13.223*1.6*10^-19 = 2.12*10^-18 J
So here the corret option is b) 2.12*10^-18 J
======================================================
3) n= 4 to n=2
in n= 4
E4 = -13.6/4^2 = -0.85 eV
E2 = -13.6/2^2 = -3.4 eV
E4-E2 = -0.85+3.4 = 2.55 eV = 2.55*1.6*10^-9 = 4.08*10^-19 J
4.08*10^-19 = h*c/lamda
lamda = (h*c)/(4.08*10^-19)= (6.625*10^-34*3*10^8)/(4.08*10^-19) = 486 nm
So correct option is d) 486 nm
===============================================
4) n=10 to n=3
E10 = -13.6/10^2 = -0.136 eV
E3 = -13.6/3^3 = -13.6/9 = -1.51 eV
E10-E3 = -0.136+1.51 = 1.374 eV = 1.374*1.6*10^-19 = 2.2*10^-19 J
2.2*10^-19 = h*f
frequency f = (2.2*10^-19)/(6.625*10^-34) = 3.33*10^14 Hz
So the correct answer is c) 3.33*10^14 Hz
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.