A wheel of mass 8.0 kg radius 0.20 m starts from rest and rotates about a fixed
ID: 1415301 • Letter: A
Question
A wheel of mass 8.0 kg radius 0.20 m starts from rest and rotates about a fixed axis, accelerating with angular acceleration 2.00 rad/s^2.Let us consider a point P on the rim of the wheel. At t=2.00 s , find
A) the angular velocity of the wheel ?
B) the speed of point P ?
C) the centripetal acceleration of point P ? D) the net torque on the wheel , assuming it is a uniform disk ( moment inertia of the disk with an axis through the center is MR^2, where R is the radius )?
Answer and show all work ! A wheel of mass 8.0 kg radius 0.20 m starts from rest and rotates about a fixed axis, accelerating with angular acceleration 2.00 rad/s^2.
Let us consider a point P on the rim of the wheel. At t=2.00 s , find
A) the angular velocity of the wheel ?
B) the speed of point P ?
C) the centripetal acceleration of point P ? D) the net torque on the wheel , assuming it is a uniform disk ( moment inertia of the disk with an axis through the center is MR^2, where R is the radius )?
Answer and show all work ! A wheel of mass 8.0 kg radius 0.20 m starts from rest and rotates about a fixed axis, accelerating with angular acceleration 2.00 rad/s^2.
Let us consider a point P on the rim of the wheel. At t=2.00 s , find
A) the angular velocity of the wheel ?
B) the speed of point P ?
C) the centripetal acceleration of point P ? D) the net torque on the wheel , assuming it is a uniform disk ( moment inertia of the disk with an axis through the center is MR^2, where R is the radius )?
Answer and show all work !
Explanation / Answer
A) angular velocity = 2 * 2 = 4 rad/sec
B) speed at point P = 0.20 * 4 = 0.8 m/sec
C) centripetal acceleration = 0.8 * 0.8/0.2 = 3.2 m/sec2
D) net torque = 0.5 * 8 * 0.2 * 0.2 * 2 = 0.32 N.m
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.