Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A simple pendulum consists of an object suspended by a string. Theobject is assu

ID: 1725151 • Letter: A

Question

A simple pendulum consists of an object suspended by a string. Theobject is assumed to be a particle. The string, with its top endfixed, has negligible mass and does not stretch. In the absence ofair friction, the system oscillates by swinging back and forth in avertical plane. If the string is 2.05 m long and makes an initial angleof 25.5° with the vertical,calculate the speed of the particle at the following positions. (a) at the lowest point in its trajectory

(b) when the angle is 15.0°

(a) at the lowest point in its trajectory

(b) when the angle is 15.0°

Explanation / Answer


   When the pendulum swings, the particle isdisplaced vertically. The vertical displacement is given by   h   =  L* ( 1 - cos )    L   =   Lengthofstring   =   2.05   m,      =   Anglebetween string and vertical      Atextreme      =   25.50       h   =   2.05* ( 1 - cos25.50)   =   0.20   m       P.E. at extremeposition      U   =   m* g * h   =   m * 9.8 *0.20   =   1.96 *m   J    a.   When the pendulum is atloweastposition,    h   =   0       P.E.   =   0       i.e. all the p.e. isconverted into k.e., hence       (1/2) * m *v12   =   U    0.5 * m *v12   =   1.96*m   =>   speed      v1   =   (2 * 1.96)   =   1.98   m/s    b.   at         =   15.00          P.E.      U1   =   m* g * h1   =   m * 9.8 *2.05 * (1 - cos15.00)   =   0.68 *m          Changeinp.e.   =   U   -   U1   =   1.96* m   -   0.68 *m   =   1.28 * m          (1/2) *m *v22   =   1.28* m          speed   v2   =   (2 * 1.28)   =   1.60   m/s          P.E.      U1   =   m* g * h1   =   m * 9.8 *2.05 * (1 - cos15.00)   =   0.68 *m          Changeinp.e.   =   U   -   U1   =   1.96* m   -   0.68 *m   =   1.28 * m          (1/2) *m *v22   =   1.28* m          speed   v2   =   (2 * 1.28)   =   1.60   m/s    
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote