When the masses of the coupled pendulum of Figure 11.1 are no longer equal the e
ID: 1896481 • Letter: W
Question
When the masses of the coupled pendulum of Figure 11.1 are no longer equal the equations of motion become m1 = -m1( b)x - k(x - y) m2 = -m2 ( b)y + k(x - y) Show that we can choose the normal coordinates X = m1x + m2y/m1 + m2 with a normal mode frequency omega12 = g/b and Y = x - y with a normal mode frequency omega22 = g/b + k (1/m1 + 1/m2). Note that X is the coordinate of the center of mass of the system while the effective mass in the Y mode is the reduced mass mu of the system (1/mu = 1/m1 + 1/m2).Explanation / Answer
X = (m1 x + m2 y)/(m1 + m2) <-------------------equation1
>>>> X'' = (m1 x'' + m2 y'')/(m1 + m2) <----------equation2
------------------------------------------------------
Y = x - y <------------------------------equation3
>>>> Y'' = x'' - y'' <-------------------equation4
-----------------------------------------------------
m1 x'' = -m1 (g/b) x - k (x-y)
m2 y'' = -m2 (g/b) y + k (x-y)
>>>> add the two equations:
m1 x'' + m2 y'' = -m1 (g/b) x - m2 (g/b) y
m1 x'' + m2 y'' = -(g/b)(m1 x + m2 y)
(m1 x'' + m2 y'')/(m1 + m2) = -(g/b)(m1 x + m2 y)/(m1 + m2)
>>>> from equations 1 and 2:
X'' = -(g/b) X
>>>> 2 = g/b
---------------------------------------------------
m1 x'' = -m1 (g/b) x - k (x-y) >>> x'' = -(g/b) x - k/m1 (x-y)
m2 y'' = -m2 (g/b) y + k (x-y) >>> y'' = -(g/b) y + k/m2 (x-y)
>>>> substitude the two equations:
x'' - y'' = -(g/b) (x - y) - k (x - y) (1/m1 + 1/m2)
>>>> from equations 3 and 4:
Y'' = (-(g/b)-k(1/m1 + 1/m2)) Y
Y'' = -((g/b)+k(1/m1 + 1/m2)) Y
>>> 2 = (g/b)+k(1/m1 + 1/m2)
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.