Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Using the definition of the Laplace transform, find the Laplace transform of eac

ID: 1921340 • Letter: U

Question

Using the definition of the Laplace transform, find the Laplace transform of each of the following signals, and specify the corresponding regions of convergence: x(t) - S(t + 1) + S (r) + e-2(t + 3) u(r + 1) x(t) = e-21 u (t) + e-4t u(t) Determine the inverse Laplace transform of each of the following functions using partial fraction expansion method X(s) = s + 2/s2 + 7s + 12 X(s) = 2s2 - 9s - 35/s2 + 4s +2 Design a continuous time system to generate output y(t) = sin(wt) u(t) when the input is a unit step function Specify the system using a differential equation

Explanation / Answer

1) a) using laplace transform, x(t) = delta(t+1) + delta(t) + e^(-6) * e^(-2t) u(t+1) X(s) = e^(-1)s + 1 + e^(-6) (1/s+2)e^(-s) b) X(s) = (1/(s + 2) ) + ( 1/(s+4) ) 2) a) ( (s+2) )/( s^2 + 7s + 12) = (s+2)/( (s+3)(s+4) ) = A/s+3 + B/s+4 (s+2) = A(s+4) + B(s+3) --------->(1) put s = -3 -1 = A(1) , A = -1 put s = -4 -2 = B(-1), B = 2 = (-1)/(s+3) + 2/s+4 inverse laplace, x(t) = -e^(-3t) + (2) e^(-4t)