<p>a) Where is the function <img title=\"f(z) = e^{{x^2} - {y^2}}[\\cos(2xy) + i
ID: 1942339 • Letter: #
Question
<p>a) Where is the function <img title="f(z) = e^{{x^2} - {y^2}}[cos(2xy) + i sin(2xy)] " src="https://latex.codecogs.com/png.latex?f%28z%29%20=%20e%5E%7B%7Bx%5E2%7D%20-%20%7By%5E2%7D%7D[%5Ccos%282xy%29%20+%20i%20%5Csin%282xy%29]" alt="f(z) = e^{{x^2} - {y^2}}[cos(2xy) + i sin(2xy)] " align="absmiddle" /> analytic?<br /> <br /> b) Find <img title=" f'(z)" src="https://latex.codecogs.com/png.latex?%20f%27%28z%29" alt=" f'(z)" align="absmiddle" /> and its derivative</p>Explanation / Answer
Analytic Function
A complex function is said to be analytic on a region if it is complex differentiable at every point in . The terms holomorphic function, differentiable function, and complex differentiable function are sometimes used interchangeably with "analytic function"
f(z)=e^{{x^2} - {y^2}}[cos(2xy) + i sin(2xy)]
f(z)=e^{{x^2} - {y^2}}*e^i(2xy)
f(z)=e^{{x^2} - {y^2}}+i(2xy)
f1(z)=e^{{x^2} - {y^2}}+i(2xy)* (2x+i(2y))
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.